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A general algorithm allowing the numerical modeling of the time and space dependence of product formation
in spherical reaction volumes is described. The algorithm is described by the complete set of mass balance
equations. On the basis of these equations, the effects of the diffusion coefficient, reaction rate, bead size,
reagent excess, and packing density of the resin beads on the overall reaction rates are determined for
second-order reactions. Experimental data of reaction progress are employed to calculate reaction rates and
diffusion coefficients in polymer-supported reactions. In addition, the conditions for shell-like product
formation are determined, and various strategies for the radial patterning of resin beads are compared. The
effect of diffusion on polymer-supported enzyme-catalyzed reactions of the Michitdigten type is treated,

as well. Finally, the effects of typical nonideal solid-phase phenomena, namely, the inhomogeneity of rate
constants and the concentration dependence of diffusion coefficients, on overall rates are discussed.

Introduction practical value, for example, in the rationalization of matrix
effects on polymer-supported reactions. Such a method could
also be used for the determination of parameters that are

. not accessible experimentally by fitting the data to the model.
partmentalized reactors, such as cells and cellular organelles, . .
There have been a series of attempts to calculate reaction

belong to this class. As one prominent example, during recent : .
: -~ rates in heterogeneous systems. Most of these calculations
decades, polymer-supported reactions have developed intg . . .
: R deal with heterogeneous catalysis. It was recognized long
an area of growing significance. They have changed the

; . . ago that realistic modeling of chemical reactions in inho-
manner of synthetic practice, and they have triggered the . : _
. . . . 3 mogeneous media, for example, of solid-phase synthesis,
evolution of combinatorial chemistdy:

o heterogeneous catalysis, or cellular reactions, needs to
Despite intense research efforts, the profound understand-,..unt for both reaction and simultaneous diffusioR?

ing of solid phase and other heterogeneous transformationsSimpler models apply only in cases in which either of these

is still rather limited. The rational planning of polymer-  ,.,cesses is much faster than the other one. When diffusion
supported reactions is mostly based on empirical knowledgeig t55t compared to reaction, the overall reaction kinetics are

coIIec.ted over.the years. Often, even experienced Organic“solution-like”, even when the actual reaction rates are
Ch?m'SFS cpn3|der polymer beads as black boxes. A generaljsually significantly reduced in comparison to those in
rationalization of the progress of polymer-supported reactions | ;tion? Reactions which are dominated by uptake of
has not yet been accomplished. ~ reactant into the microreactors have been described success-
Over recent years, significant progress has been achleveq¥u||y by diffusive mass transfer into spher®s.
in the On'lland off-bead analysis of polymer-supported  For simple reaction types and special boundary conditions,
reactions;™** however, without a quantitative model at hand, - the material balance equations for diffusion-reaction systems
the analysis of experimental data with respect to optimization have been solved analyticaff§41523The most well-known
of processes and materials is difficult. A computational model among these expressions is that derived by Thiele for first-
using experimentally accessible parameters would be of greaghat steady-state conditions apply during the reaction, the
dimensionless Thiele modulus is obtained

Reactions in inhomogeneous media are ubiquitous in
chemical and in biological systems. All processes in com-
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Figure 1. Concept of the algorithm. The resin beads of diameter
d and volumeVpeag and the surrounding homogeneous solution
completely fill the reaction vessel of volung,. A single bead is
divided into N shells of thicknessAr. The mobile reactant, S,
diffuses between the shells with diffusion coefficiebt and

undergoes a reaction with the polymer-supported reactant R with

the second-order rate constat, yielding polymer-supported
product P.

radius of the pores, ard is the diffusion coefficient of the
reactant. If TM> 1, the reaction is diffusion-controlled; i.e.,

Egelhaaf and Rademann

balance eq 2 for the concentration ofcg, at any timej,
and any distance, from the bead center.

Feyr, t)

acg(r, t) ,
— o r, ).—2
ar

ot

— k(r, t)eg(r, eg(r, 1) (2)

The first term on the right-hand side of eq 2 describes the
diffusion of S inside the bead, expressed by Fick's second
law. The second term describes the consumption of S by
the reaction with the immobilized reactants, R. In hetero-
geneous systems, the diffusion coefficiefts, and the
second-order rate constaktare generally time- and space-
dependent.

General analytical solutions of eq 2, that is, of the
combination of diffusion processes with subsequent chemical
transformations, are not available. Thus, we use numerical
methods to solve the corresponding set of difference equa-
tions. This offers the advantage of the algorithm’s being
easily adaptable to changing boundary conditions and even
different reaction types, for example, transformations involv-

the reaction rate is proportional to the reciprocal of the grain ing polymer-supported catalysts.

size. For TM< 1, the reaction is activation-controlled; i.e.,
the reaction rate is independent of the grain size.

The concept of the algorithm is visualized in Figure 1. A
resin sphere and the surrounding solution are contained in a

Because analytical solutions are only accessible for simple total reaction volumeyi, of which the resin sphere occupies
reaction types and special boundary conditions, their ap-a fractionX. The resin sphere is divided intd sufficiently

plication is severely limited. Therefore, a number of diffu-

thin concentric spherical shelis= 1, ...,N. For every shell,

sion-reaction systems have been treated by numerical solutiori, the change of concentration of &gs(j, ), during the
of the corresponding sets of mass balance equations usin@UfflClenﬂy small time intervalAt is calculated. The con-

finite differencé”182024and finite elemerit2% techniques.

centration changes caused by diffusion and reaction,

However, these methods have not yet been applied to theAGsi(j, t) andAGs ead], 1), respectively, contribute additively
systematic modeling of matrix effects on polymer-supported t0 Acs(j, t). Loss or gain of S resulting from diffusion to or

reactions on resin beads.

from the two adjacent shells is obtained by applying Fick’s

Here, we wish to introduce a general algorithm that allows first law, inserting the diffusion coefficieris of S in the
for the numeric modeling of the time- and space-dependenceresin (eq I). (Roman numerals refer to equations in the
of product formation in spherical reaction volumes under Computational Section.) Partitioning of S between solution
almost any set of boundary conditions. We will first describe @and bead is accounted for by introducing the partition
the algorithm by introducing the complete set of mass balancecoefficientas (egs Ib and c). The decrease of concentration
equations. On the basis of these equations, the effects ofdue to the reaction of S with R is calculated according to a
diffusion coefficient, reaction rate, bead size, reagent excesssecond-order rate law (eq Il), inserting the rate conskant
and packing density of the resin beads on the overall reactionAfter the concentrations of S and Rs(j) and cr(j), have
rates are described for second-order reactions and appliedeen calculated for all shells (egs Ill), the procedure is
to the interpretation of experimental results for solid-phase repeated using the result of time step~ t + At as input
reactions. Subsequently, different strategies for radial pat-for the calculation of time step+ At — t + 2At, until the
terning of resin beads are compared. The effect of diffusion desired maximum reaction time has been reached. In this
on polymer-supported enzyme catalyzed reactions of theSimple model, a polymer-supported reaction is reduced to

Michaelis—Menten type is treated, as well. Finally, the

three characteristic parameters: the second-order rate con-

effects of typical nonideal solid-phase phenomena, namely, Stant,k, the diffusion coefficientDs, and the diameter of
distributions of rate constants and concentration dependencéhe resin spheral. Additional parameters are introduced to

of diffusion coefficients, on overall rates are discussed.

Results and Discussion

Description of the Algorithm. For the derivation of the

describe variable reaction conditions: the volume fraction
occupied by the resinX = VpeadVio, and the initial
concentrations of S and Rgo and cro, respectively.

The following boundary conditions apply during the
simulations: The polymer-bound reactant R is homoge-

algorithm, it is assumed that polymer-supported reactions neously distributed in spherical resin particles which are
are described appropriately by the diffusion of a reactant in dispersed in a homogeneous solution of the reactant S. That
solution (S) to the reactive sites (R) immobilized inside the the polymer-bound rectants are, indeed, homogeneously
resin beads, followed by a second-order reaction, yielding distributed has been shown experimentally in several cases,
an immobilized reaction product (P): RS— P (see Figure  for example, by Ram&nand fluorescence microscopy’

1). The rate of this reaction is calculated by solving the mass The suspension is ideally stirred; i.e., the concentration of S
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outside the resin is uniform at all timé%4 the initial 1,0 ——m————
concentration of S inside the beads is 0. The diffusion | PR
coefficient and rate constant are independent of the position IS -
in the resin bead. The diameter of the beads remains constant 054 .~
throughout the reaction. In addition, coated particles may 1
be treated by slightly changing the boundary conditions: a D=10" cm’s’
certain radiusrmax is chosen so thatl2 — rma is the 00—
thickness of the active layer, which is constituted by shells | / T
j = 1 tojmax The concentration of polymer-bound reactant

in the inactive core is set ko (I < I'ma) = 0. If it is desired 0.59: /

that the core of the particle be inaccessible to the mobile I s ]
reactant S, diffusion of S through the sphere with radjus D=10" em’s’
is supressed by setting the surface area between jghell 00— R
and the core to 0, that ig} max-1 = 0.
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To gain reliable information from the comparison between 054/ |
experiments and simulations, the number of adjustable ’ ;'
parameters in the simulations should be kept as small as 1 D=10" cmzs.u'
possible. As many reaction parameters as possible must either 00—
be set to a fixed value by controlling the reaction conditions : / I
or they must be determined by independent physicc_)chemical 1/ D=10°cm’s" |
methods. One of the most important requirements is to keep 0,5- f -
the temperature of the reaction system constant. This is easy [ k=001M"s
to achieve for the mobile phase, whereas local temperature 1.7 T k=01Ms
gradients inside the beads cannot be completely avoided. 00—+ k=1 MIS .
However, for the examples given below, temperature changes 0 500 t/s 1000

are so small that even for large values of reaction enthalpies,Figure 2. Simulated time traces of product formation normalized
they do not change the reaction rates significantly. Thus, for to the initial concentration of reactant Bx{Cro corresponds to the-
the sake of clarity, temperature changes are not considereqrac“on of reacted polymer-supported reaction sites and, thus, gives

. . - . : he conversion of R) during polymer-supported reactions with
in this article. A further requirement pertains to the homo- different diffusion coefficientsD, and second-order rate constants,

geneity of the beads and their physicochemical properties.k. The other parameters are kept constaht= 100m, X = 0.5,
For exampleDs andk should be independent of time and cgro = 0.05 M, cso = 0.25 M.

space. This condition is not easy to maintain in practice 1 The Effect of Diffusion Coefficient and Second-Order
because the properties of the resin may be changed aprate Constant on the Overall Reaction RateThe graphs
preciably by the reaction, especially for highly loaded jn Figure 2 show the relative product yieleh(t)/cro, for the
resins? How local and spatial variations &fandDscanbe  yeaction S+ R — P in beads ofl = 1004m as a function

be homogeneous, which may be monitored by some spec-anq 0.01 M! s are chosen. The diffusion coefficient is
troscopic method, for example, fluorescence or Raman ygried fromD = 10 2 cnm? s toD = 106 cnm? sL.
microscopy>° Ideal stirring conditions have to be provided,  Ajthough diffusion coefficients of typical reactants in
either by vivid stirring or shaking or by rapid flow. The  gg|ytion vary between values such@s= 0.65 x 106 cn?
starting point of the reaction should be well-defined in time. <1 for the protein BSA in watéf and Do = 13.5 x 1076
In the case of reactions at elevated temperatures, this impliessn? 51 for methyl red in benzen¥, they are significantly
that the target temperature has to be reached very quickly.reduced in polymer gels. In many cases of solvent-penetrated
In addition, the beads should be preswollen by the solvent polymer gels at high solvent concentrations, the diffusion
in which the reaction occurs. Slgnlflcant contributions of coefficient of the solute decreases exponentia”y with the
anomalous diffusion should be avoided. volume fraction,p, of the polymer. For a given value ¢f,
Application of the Algorithm. In the following, the the reduction oD depends on the type of polymer, the solute
algorithm described in the previous section will be employed size, the solute concentration, and possible specific interac-
to model characteristic situations relevant to the synthetic tions between solute and polymer (for further details see,
chemist and biochemist. We concentrate mainly on reaction e.g., the review article by Masaro and 2Buln well-swollen
conditions which are typical for polymer-supported organic beads, the volume fraction of the polymer usuallypis>
synthesis (as, e.g., the large excess of mobile reactant with0.2—0.4. For small and medium-sized organic reagents, this
respect to resin-bound reactant, which is commonly em- leads to a reduction of the diffusion coefficient by a factor
ployed to achieve nearly complete conversion of the latter). of typically 3—6% (e.g., the diffusion coefficient of BOE€
The effects oDg, k, d, X, and reagent excess on the overall Phe is reduced frorD, = 4.8 x 107¢ cn¥? s % in DMF bulk
rate of the polymer supported reaction will be described. solution to D, = 0.9 x 1078 cn? s in DMF-swollen
Finally, examples from the literature will be discussed on polystyrene beads§.More dramatic decreases are observed
the basis of this model. for higher values ofp, high degrees of cross-linking, larger
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Figure 3. (a) Semilogarithmic plots of the reagent conversion—(ZTp/Cro cOrresponds to the fraction of nonreacted polymer-supported
reaction sites) vs time for two extreme values of the r&igk. (b) Radial patterning of beads by solid-phase reactions: Concentration
profiles of product P (solid line) and mobile reactant S (broken line) along the radius of therbea@d ¢orresponds to the bead center)

at different times after the start of the reactions.t(¥ 10 s, (2)t = 400 s, (3)t = 2400s. A:k=0.01 M1 s1, Ds=10%cn? s B:

k=100 M1s1 Ds=10"° cn? s L Please note that curve 3 corresponds to 97% completion of the reaction. (c) Radial patterning of
polymer beads by reactions with substoichiometric reagent. Concentration profiles for two polymer-supported reactions with different initial
concentrations of S but otherwise equal parameters L M1 s1, Ds = 107 cm? s %, X = 0.091,cro = 0.01 M). (1)cspo = 0.2 M,

reaction quenched aftér= 10 s; (2)cso = 0.003 M, reacted until completion. Inset: time courses of the reactions (conversion vs time).

solute sizes, and strong solafgolymer interactiornig3(e.g.,
the diffusion coefficient of rhodamines is reduced fr@m
=2.8x 10%cn? st in watef®to Do ~ 1077 cn? s tin
solvent-swollen polymer beat#and toDe ~ 5 x 1071 ¢cn?
s tin silica sol-gel materials§337:38 cn? s71), the exponential fit curve reproduces the simulation
For the bead size off = 100 um considered here, the very well. Case 2K =1 M-1standD = 1079 cn? s}
effective rate of the overall reaction shows a pronounced yields strong deviations from exponentiality. After a rapid
dependence on botk and Ds. Although the reactions do  start, the reaction slows down appreciably.
not follow simple rate laws (see below), the time traces can  Tpig dependence of kinetics on the rafiz/k can be
be fitted to first-order rate laws (eq 3) in fair approximation, | +ionalized by considering the temporal developments of
because the mobile reactant S is present in 5-fold excess i'}he concentration profiles of S and R during the reaction

the overall reaction. (Figure 3b). Case 1 may be regarded as a two-step reaction,
in which the beads are quickly penetrated by the reactant S
in a first step, which is followed by a homogeneous pseudo-
first-order reaction between S and R. In case 2, the reaction
starts with a rate which is determined by the second-order
rate constantk, because the concentration of S in regions
of nonreacted R in the bead is high. This is due to relatively
fast diffusion at the beginning of the reaction, which in turn
is a consequence of the large concentration gradient of S in
the outer regions of the beads at that time. Because S is
consumed rapidly after having reached a nonreacted region
of the bead, a rather sharp reaction front is formed. The
Ds= 10-% cn? s Lis a slightly reduced value & = 0.0009 concentration gradient of S becomes smaller as the reaction
s ! obtained. This means that for beadslof 100um, the front procgeds into the bead. Con-sequently, diffusjon slows
effect of diffusion on the overall reaction rate is negligible, down, which results in a decreasing overall reaction rate.
provided second-order rate constant and diffusion coefficient The simulation of concentration profiles may be helpful
do not take on extreme values, that is, as long as 0.1 in the task of radial patterning of resin beads. Radial
M~tstandDs = 108cn? s patterning (shell formation) is achieved by one of the
As already mentioned above, closer inspection of the time following strategies: (a) adding S in subequivalent amounts
traces reveals that the reactions of Figure 2 do not follow and reacting the mixture until completfoar (b) quenching
simple rate laws. The exponential fits, for which the results the resin-modifying reaction after the appropriate time span.

are given above as measures for the overall reaction rates,
are only more or less satisfactory approximations. Figure 3a
shows a semilogarithmic plot of two extreme combinations
of k andD. For case 1K = 0.01 M1 st andDs = 106

ch—k’ .
o KGR 3

For the fastest rate constantlof= 1 M~ s~ the exponential

fit yields pseudo-first-order effective rate constants for the
overall reaction ok’ = 0.2, 0.12, 0.014, and 0.0013'sfor
diffusion coefficients ofDs = 1076, 1077, 1078, and 10°
cn? s1, respectively. For the smallest second-order rate
constant ofk = 0.01 M s1, pseudo-first-order rate
constants ok’ = 0.002 s! are obtained folDs = 1076—
1078 cn? s7. Only for the smallest diffusion coefficient of
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Polymer spheres with two to five differently functionalized Diffusion coefficients may be controlled by using solvents
concentric shells have been produced via a series ofof different swelling abilities, but care must be taken that
protection/deprotection reactioffsAt first glance, strategy  there is no concomitant variation of the rate constant.
(a) seems to be less favorable, because the reaction takes 2. The Effect of Bead Size on the Overall Reaction
much longer, and the resulting boundary between modified Rate. The elucidation of the impact of bead size on the
and unmodified regions is more diffused (Figure 3c). progress of solid phase reactions has been an issue of many
However, in practice, quenching of the modifying reaction experimental and theoretical investigations. Different cases
will always involve a diffusion process (either of a quenching have been observed. No dependence of reaction rate on bead
agent into the bead or of the reactant out of the bead). size has been found for a comparably slow alkylation of a
Consequently, the resulting product profile will not be as phenolate, monitored by spatially resolved resin bead analy-
steep as that given by curve 1 in Figure 3c. sis28 |n addition, no bead-size dependence was observed for
The profiles in Figure 3b show that both strategies require the oxidation of benzyl chloride to benzaldehyde by using
the formation of sufficiently sharp reaction fronts. This, in  chromate salts supported on a DVB cross-linked poly-

turn, requires the rate of diffusion of S, styrene’® However, for many reactions involving polymer-
supported catalysts, it has been found that the overall reaction
)= DA(r) o (4a) rate is a function of inverse bead sizé*“3 Recently, for
rt I /rt

the aminomethylation of modified porous silica, a depen-

i 2 3
into any shell at distanaefrom the center to be much smaller dence of the overall reaction rate dn was repo_rted. o
than the rate of its consumption, These different cases may be understood by simple kinetic

considerations, based on the arguments of the preceding

Neac] section. If diffusion is much faster than reaction, thag),
dt Jre key(r, eg(r, 1) dv (4b) kcrd? — oo, significant reaction starts only after the beads
have been homogeneously penetrated by mobile reactant S.
in this shell of volume ¥ The reaction rate will thus be independent of bead size. If,
de on the other hand, diffusion is much slower than reaction,
kes(r,t)eg(r,t) dv > DSA(r)(d—rs)rt (4c) that is,Dg/kcrd® — 0, mobile reactant S is consumed as soon

as it enters regions with active immobilized reactant R. In
catalysts, this leads to the formation of a steady state, which

d/10, which yields a maximum value &V ~ 4sr2d/10 for involves a linear concentration gradient of S throughout the
the active reaction volume at a distancérom the bead reaction. Thus, the mass of S entering the beads per unit

center. Both rates constantly change as the reaction frontliMe iS proportional to the total surface area of all beads in
proceeds toward the center of the bead. As evident from (€ reaction system, which is proportional talif the
Figure 3b, the concentration gradient of S is approximately @mount of R is kept constant. For polymer-supported
linear if S is consumed more rapidly than it is provided by SYNthesis, where S is usually added in excess over R, the

diffusion. We arbitrarily consider the situation when half of diffusion front moves from the surface of the bead to its
the immobilized reactant has reacted. that is. when the CENter as the reaction proceeds. Therefore, the concentration

reaction front has reached= r' ~ 0.8d/2 gradient and, thus, the rate of diffusion decrease during the
reaction. Under these conditions, the rate of diffusive mass

We require the reaction front to be not wider than=

cg(d/2t) d cg(d/2,t) uptake into an ensemble of spheres scalesavitfat constant
Ke(r',)—5—A(")75> DA 55 (58)  total volume of the sphere ensemMdhe same is therefore
true for the overall reaction rate.
chd2 Although these simple considerations allow one to assess
500Dg *>1 (5b) the expected bead size dependence of the reaction rate, the

algorithm presented in part 1 is capable of providing the

This expression serves as a rule of thumb for the formation product distribution at any time and at any location for any
of sharp reaction fronts. It is analogous to Thiele’s modulus, combination of diffusion coefficient, reaction rate, and bead
however, with an important difference. Thiele’s modulus was size. Figure 4 gives an overview of the effect of particle
derived for catalysts, for which a steady state is maintained size on the reaction half time. Three different cases are
throughout the reaction. In our case, the concentration presented here. Reactions with high second-order rate
gradient of S decreases as the immobilized reactant isconstants and relativey small diffusion coefficients show a
consumed. Therefore, no steady state is reached during thestrongly superlinear dependence of the effective reaction rate
reaction. The diffusion gradient is steeper at the beginning on bead diameter. The example shown in Figurekd= (
of the reaction and decreases with time, whereas the widthM~! s71, D = 5 x 1078 cn? s1) is very close to ideal
of the reaction front remains almost constant. Thus, the diffusion control, resulting in a fairly linear plot of reaction
modulus will be larger in the beginning than toward the end half time vs square of the bead diameter. Increasing the

of the reaction. diffusion coefficient toD = 106 cn? s™* results in a>10-
This modulus may also serve as a guideline to distinguish fold faster reaction for the 500m beads, whereas the
between diffusion-controlled¢zd?/500Ds > 1) and activa- effective rate for beads af= 20 um increases by only 50%

tion-controlled kczd?/500Ds < 1) reactions. (Figure 4b). For reactions with small reaction rates and large
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Figure 4. Calculated reaction half-lives,,, as a function of bead N
diameter,d, for three polymer-supported reactions with different 0 1000 2000 3000 (/s
combinations ok andDs (note the different ordinate scales). The . i I .
remaining parameters are kept constaxit= 0.2, cro = 0.05 M, Figure 5. Semilogarithmic plots of the time traces of polymer-

Cso = 0.5 M. The polynomial fit curves are guides to the eye. supported reactiongo = 0.05 M,k = 0.1 M"* s, X = 0.5) on
S0 oy g y beads of diameted = 100 um for two different diffusion

diffusion coefficientsk = 0.01 M~*s™%, D = 108 cn? s 7)), coefficients (A,D =106cn? s %; B, D = 10° cn? s ). Reaction

. . f rogress is given in fractions of nonreacted polymer-supported
the dependence of the effective reaction rate on bead dlametefeagtants (1—g CplCro). For each diffusion Coeffiréie?lt, the tﬁ’fces

is almost negligible (Figure 4c). . were simulated for initial reactant concentrationsgf= 0.05 M
3. The Effect of Reagent Excess on the Overall Reaction  (curve 1),cso= 0.10 M (curve 2)cso = 0.25 M (curve 3), andso

Rate. In solid-phase synthesis, the mobile reactant is usually = 0.50 M (curve 4).

added in excess of the immobilized reaction sites to maximize

the conversion of the latter. The relative excess of S over R dependence of reaction rates on mobile reactant concentration
affects not only the yield, but also the rate of the overall iS more pronounced for small concentrations of S.

reaction. Reactions that are characterized by a high ratio of 4. The Effect of the Ratio of Solvent and Bead Volumes
Dy/kcrd? (see Figure 5a, wheflds = 10°% cn? st andk = on the Overall Reaction Rate.The fractionX of the reaction

0.1 M~ s show a concentration dependence that is very volume that is occupied by the resin beads also affects the
similar to that of homogeneous solutions. If S is present in reaction rates. Figure 6 shows the time traces of two reactions
equimolar amounts, the reaction rate obeys a second-ordewith different degrees of diffusion control. The kinetics of
rate law in good approximation. For the example shown in each of these reactions has been calculated for Koth
Figure 5a, it takes = 200 s for 50% completion and= 0.5, which corresponds to relatively close packing of spheres,
2300 s for 92% completion of the reaction. Upon doubling as obtained in a flow reactor, and f&r= 0.04, which is

the amount of S, these time spans are reducéd-t82 and more characteristic of a stirred suspension. As illustrated by
380 s, respectively. Addition of S in 5-fold excess over R the time traces in Figure 6a (for whidbs = 1078 cn¥ s7*
yields a pseudo-first-order reaction with a reaction half time andk = 1 M~ s7%), the rates of highly diffusion-controlled

of t1, = 30 s, whereas 10-fold excess result$;jp= 15 s. reactions decrease significantly with decreasing packing
These half-lives are practically the same as for the corre- density. This effect is due to different concentrations of
sponding homogeneous reactions. mobile reactant S in the liquid phase at different packing

Reactions with smaller ratios &@fs/kcsd? (see Figure 5b,  densities. At low packing densities, the concentration of S
whereDs = 10 ° cn? st andk = 0.1 Mt s71), for which in the liquid phase is smaller than at high packing densities,
the rates are dominated by diffusion and the kinetics, thus, because the total amount of S in the reaction system is the
significantly deviate from first order, also show a pronounced same in both cases. Thus, smaller concentration gradients
dependence on the concentration of the mobile reactant Sof S are obtained for smaller valuesXfwhich in turn lead
For the example shown in Figure 5b, increasing the to reduced mass transfer of S into the beads at small packing
concentration of S from an equimolar ratio to 2-, 5-, and densities. The lesser the extent to which reactions are limited
10-fold excess over R causes a reduction of the reaction halfby diffusion, the weaker is the dependence of their overall
time from t;, = 1250 s toty, = 620, 335, and 240 s, reaction rate orX, as demonstrated by the reaction shown
respectively. In the case of diffusion-dominated reactions, in Figure 6b Ds = 107 cn? st andk = 0.1 M1 s7%),
the enhancement of the reaction rate with increasing con-which is much less sensitive to packing density than its
centration of S is due to the larger concentration gradient of counterpart of Figure 6a. For reactions that are far from
S, which in turn leads to an increased flux of mobile reactant diffusion control (e.g.Ds= 10"¢cnm? s *andk = 0.01 M
into the resin beads. As demonstrated by Figure 5b, thiss™?), the differences between the time traces calculated for
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0,0 —m——m8m ™ —m—————————— "\
0 500 /¢ 1000 At A\ :
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S/ Chg 1 Figure 7. Simulated time traces (solid curves) of product formation
(given in fractions of nonreacted polymer-supported reactant, 1
0,5 o CplCro) dur_ing Knorr attachment to aminomethy_l polyst_yrene_beads
; k =01M's of three different sizes. The parameters used in the simulations are
; D=10" cm’s” listed in Table 1. (1f = 80um, (2)d = 160um, (3)d = 320um.
S X=05] The dashed curves are exponential fits to the simulations.
b, —X=0.04 ) . .
————— aminomethyl polystyrene resins (see Scheme 1). The reaction
0 100 200 300 ;¢ 400 was carried out on beads of three different sizes under the
Figure 6. Normalized time traces of product formation (expressed conditions specified in Table 1. In all three reactions,
in terms of conversion of polymer-supported reagesitro) during identical amounts of 0.5 mmol of amino groups (R) were
polymer supported-reactions (bead diameter 160 um, cro = added to 50 mL of 0.2 M solutions of Knorr linker (S) in

0.01 M, cso = 0.2 M) for two different combinations df andDs. dichloromethane (thus, due to different loadings of the
For each of these cases, the time traces are simulated for two

different values ofX. polystyrene resins with amino groups, the volume fractions

Xvary with bead size). The authors obtained first-order rate
X= 0.5 and 0.04 are negligible, because the concentrationsconstant e, from exponential fits to the experimental data
of S within the beads are practically the same for both values (Table 1). These rate constants decrease significantly with
of X. increasing bead size.

5. Simulation of Experimental Kinetic Data of Resin- We attempted to reproduce the bead-size dependence of
Supported Reactions.In the following, the model will be  the reaction rates by using a single sekaindDs values in
applied to the interpretation of experimental data obtained the simulations for all bead sizes. Figure 7 shows the set of
by Li et al#® on the effective rate of Knorr attachment onto simulated time traces obtained for= 1.25 M1 st andDsg

Scheme 1.Knorr Linker Attachment Investigated on Six Different Re8ins

MeO
RCOOH O i
DIPEA, PyBOP o]
HoN Q O\AN C S
2 FmocHN H
MeQ
RCOOH
DIPEA, PyBOP O Ohig

o}
N~ Q agr.y -Q
FmocHN H/\“/

aSee Table 26 The primary amine is a benzylic amine (top) in the polystyrene resins and the champion resin, and an aliphatic PEG-amine (bottom) in
the case of Tentagel and Argogel resins.

Table 1. Parameters Used for the Simulation of the Curves in Figure 7

resin type a3, um X2 Cre®, M csd®, M k, M~1st D, cn?st Koxp s S Kym 2 71
PS 80 0.04 0.01 0.2 1.25 % 1078 0.077 0.069
PS 160 0.04 0.01 0.2 1.25 71078 0.021 0.017
PS 320 0.1 0.01 0.2 1.25 X 1078 0.004 0.005
Tentagel 200 0.1 0.01 0.2 15 x31077 0.06 0.051
Argogel 240 0.063 0.01 0.2 2 %1077 0.07 0.076
Champion 160 0.063 0.01 0.2 10 x110-6 0.4 0.3

@ The values for the diameters of the swollen beatishe volume fraction, and the initial reactant concentratiotis and cso were
calculated from the data given in ref 45. The second-order rate conktantsthe diffusion coefficient® were used for the simulations.
P The first-order rate constants,,, andk;,, were obtained from exponential fits to the experimental ‘datad to the simulated curves,
respectively.
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Scheme 2 1,0

K, k,
Smcb + stt k ) > Zslal P mob + Rstat

cl,z’cs‘J

=7 x 108 cn? s %, which is among the closest approxima-
tions to the experimental data. To be able to compare 054 1
experimental and simulated rate constants, exponential curves T i
are fitted to the simulated time traces (Figure 7). The i
simulated time traces are clearly nonexponential (see Figure 1]

7), whereas Li et al¢ found acceptable agreement between i A
the experimental traces and the exponential fitting curves. 0,04 —— ——
However, the deviations observed in Figure 7 between 0 500 t/s 1000
simulated time traces and first-order kinetics fall within the - — .
experimental error of the analytical method used by Li et ] B |
al. The first-order rate constants obtained from the expo- 10000 - i
nential fits are listed in Table 1. Whereas the agreement s .
between experimental and simulated rate constants is satis- B
factory for the smallest bead size, there are significant £ | .
deviations for the two larger bead sizes. Obviously, the 50004 3 .
reduction in reaction rate for the largest bedd<320um), 1
as compared to the smaller bead sizes, is too strong to be | ________-2——‘
ascribed solely to the increased bead diameter. Nevertheless, B, 7
the agreement between simulated and experimental bead- 0+=—— e 100

size dependence of the rate constants is reasonable, especially

when the variations between the different resins (e.g., in F;gure 8. (A) tirr;e trgces Oi/pro)d‘éCt_formﬁ“O” (elxp_ressed ?“tef;ns
. ; ; P : of conversion of substratep/csg) during the catalytic reaction o
loading with amino groups) and the uncertainties in the input Scheme 2. The following parameters were used in the simulation:

parameters (e.g., the diameters of seollenbeads) aswell | = 18 M-1s2 k ;=1 st ky= 10 SL, Ccsp = 0.01 M, Cxo
as in the experimental results (e.g., inaccuracies related to= 105 M, d = 100 um, X = 0.5. Curve 1D = 107 cm? s°%;
start and stop procedures) are taken into account. curve 2,D =5 x 108 cn? s curve 3,D = 10° cn? s, (B)

The rates of the Knorr attachment reaction observed for Lineweaver-Burke plots of the traces shown in part A.
PEG-containing resins are much higher than those obtained 6.1. Effect of k and D on the Kinetics of Catalytic
for the polystyrene resins (Table 1). The results of the Reactions.In the polymer-supported model reaction con-
simulations are also given in Table 1. These valueskfor sidered here (Scheme 2), the enzyme is assumed to be
and Ds should not be taken too literally, because other completely immobilized in the polymer bead, whereas both
combinations ok andDs yield very similar first-order rate  substrate S and product P are mobile (for the sake of
constant' for the overall reaction. However, some general simplicity, the same diffusion coefficient is chosen for S and
trends in the data should be noted. The diffusion coefficient P). At the beginning of the reaction, no substrate S is present
Dsin all of the PEG resins must be larger than that obtained in the resin beads. After the start of the reaction, S diffuses
for the polystyrene resil)s = 7 x 108 cn? s71), because  into the resin bead and reacts with the enzyme R, according
otherwise, the simulated reaction rates are always smallerto eqgs |, IV, and V. The product, P, partitions between the
than the experimental ones, independent of the value insertecdbead and the liquid phase. Figure 8 shows the time traces of
for the rate constank. Not only Ds but also the second-  product formation for two extreme values of the diffusion
order rate constant, is affected by the resin type, as coefficients,Ds andDp, but otherwise equal reaction condi-
becomes clear from the simulation of the reaction rate of tions. For the relatively large diffusion coefficient Bf =
the Champion resin, which undergoes the fastest Knorr 1076 cm? s74, the kinetics of the polymer-supported reaction
attachment. To reproduce the experimental reaction rate byare very similar to those of the reaction in homogeneous
simulation, the second-order rate constant must exkeed  solution. For example, the reaction rate is of zeroth-order at
3.5M st evenifDs= 3 x 1078 cn? s tis inserted for the beginning of the reaction. The Lineweav&urke plot
the diffusion coefficient of the Knorr linker. (Figure 8b) of this reaction is linear in good approximation,

6. Modeling of Enzyme-Catalyzed ReactionsSimula- except for a short induction periodtat 5 s. This induction
tions of polymer-supported reactions may also be extendedperiod is heeded to establish a more or less homogeneous
to catalytic reactions, as illustrated by the following example. concentration of S throughout the bead (Figure 9). The
The kinetics of a typical enzymatic reaction in homogeneous maximum reaction rate obtained from the Lineweaver
solution are usually described by the Michaelienten Burke plot,zr max IS practically the same as in homogeneous
(MM) (Scheme 2) reaction, where enzyme R and reactant Ssolution ¢rmax= 107* M s71), and the MichaelisMenten
form an intermediate Z, which decays either to the reactants (MM) constant ofKy = 1.09 x 10~ M exceeds that of the
S and R or to product P and enzyme R. In matrix-supported corresponding homogeneous reactiéty (= 1.01 x 1073
reactions in which the enzymes are entrapped in agel M) only slightly. For the parameters used in this example,
or polymer matrix, both MM? and non-MM kinetic§” have the effect of diffusion on the overall reaction rate is rather
been observed. modest. Even upon reduction of the diffusion coefficient to
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M I - - - - are formed, which approach a constant value dfter220
3 s. Under these conditions, the reaction rate is determined by
the rate of diffusion of S into the beads, which in turn is
"""" 1 proportional to the concentration gradient. Accordingly, the
2 time traces of product formation obey zeroth-order kinetics.
T ] As the reaction reaches a stationary state after a short
0’005-_ i 2 induction period, the bead diameter dependence for this
reaction is predicted by the Thiele model. Rewriting eq 1 to

0,010+

I 3 Y
0,000_ S TM :g R 5 (Ga)
50 25 r/pum 0 D<Cs
0,015, ' T B
0,010-7‘;—::———————5____________: and inserting the MM expression
0;005 "/f .. . '““\A______% " kzleRO 6b
oM i ] RT Tk, (6b)
120 kg +———
0,001 1 Cs
for the reaction rater, we obtain
0,000 +———=a ;
, k.k,C
50 t/pm 40 TMzg " (6c)
Figure 9. Concentration profiles (concentrations vs distance, D.ck + 2 -1
from the center of the bead) for the catalytic reactions of Figure 8 s |™ Cso

(ki=1FM1s1 k;=10s"t k=10 s, cgo= 0.01 M, Cro
=10"°M, d=100um, X = 0.5). Solid linesgp; broken linesgs. . . . .
(A)D=10%cnm?s % (1)t=10s, (2t =70s, (3)t = 220 s. (B) Insertion of the parameters used in Figure 10b yields¥M

D=10°%cms % (1)t=10s, (2t =220s, (3)t = 1720 s. 2 for a bead diameter af = 5 um.
Inspecting Figure 10d shows that according to the simula-
D =5 x 108 cn? s, vrmax remains almost unchanged, tions, the reaction rate is proportional to reciprocal bead size

and the MM constant is increased to oy = 2.9 x 10°° for bead diameterd > 20 um, whereas fod < 5 um, the
M. bead size dependence of the reaction rate is negligible. Thus,
For very small diffusion coefficients, for examplb, = the simulation results are in nice agreement with the

10°cn? s7%, the overall reaction rate is reduced significantly prediction of the Thiele modulus.
as compared to the corresponding homogeneous case. 6.3. Rates of Catalytic Reactions in Coated Particles.
Concomitantly, the time traces of product formation do not From inspection of Figure 10d, it is obvious that in the case
show zeroth-order rate behavior any more (Figure 8). The of slow diffusion, only~10% of the bead volume is reached
Lineweaver-Burke plot (Figure 8b) exhibits a fairly linear by the mobile reactant S. Thus, coating of the active resin
relationship fort > 220 s, from whichvg max= 3.5 x 107 material onto an inactive core will allow reduction of the
M st andKy = 0.33 M is obtained. During the induction amount of applied catalyst appreciably without really af-
period ¢ < 220 s), diffusion is faster than reaction; i.e., the fecting the reaction rate. Table 2 summarizes the results of
concentration profile of S progresses into the bead.tFor simulations using the same parameters as for the strongly
220 s, consumption of S is faster than diffusion; i.e., the diffusion-controlled reaction of Figure 10b, but restricting
concentration of S decreases continuously all over the beadthe catalytically active region to an active shell coated onto
(Figure 9). It is interesting to note that the catalytic centers an inactive and impermeable core. As evident from Table
in the center of the bead, that is,rat 40 um practically do 2, reducing the active region of the 10fn sphere to a shell
not participate in the reaction. of 2 um in thickness saves almost 90% of the catalyst while
6.2. Bead Size Dependence of Catalytic Reactiorito decreasing the reaction rate by only 10%.
investigate the bead-size dependence of catalytic reactions, In general, the effect of coating may be assessed by solving
two MM-type polymer-supported reactions with different eq 6 for the bead radiugl/2, which then represents an
diffusion coefficients but otherwise equal kinetic parameters estimate for the optimum coating thickness.
were simulated. The concentration of S in solution was kept  Effects of Spatial and Temporal Variations of Bead
constant during the reaction. The resulting concentration Properties on Overall Reaction RatesHeterogeneity of
profiles are shown in Figure 10a and b. In the case of rapid the reaction environment and restricted space are features
diffusion (Figure 10a), almost no bead-size dependence iswhich are inherent to polymer-supported reactions. These
observed for realistic bead sizes, because the beads aréatures are responsible for many undesired results, which
penetrated by the mobile reactant before significant amountshave been described in the literature. Examples are decreas-
of product have been produced. In the case of slow diffusion ing overall reaction rates during the reactiband broad
(Figure 10b), practically linear concentration gradients of S product distributions in peptide synthesis.
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Figure 10. Concentration profiles of substrates(broken lines) and producty, solid lines) for two catalytic reactions with different
diffusion coefficients but otherwise identical parametégs{ 10° M~1s1, k_; =10°s1, k, =10 5%, cs = Cs0= 0.02 M, Ccro = 1074 M,
X=05)(A)D=10%cms; (1)t=10s, 2)t=70s, 3)t=220s. (B)D=10°%cm?s%; (1)t=10s, (2)t =220s, (3t =1720

s. (C) Time traces of product formation (given as the fraction of reacted subsi/atg), for the catalytic reaction of part B. (D) Dependence
on bead diameter of reaction times needed for reactiftgo, = 1, for the catalytic reaction of part B.

Table 2. Effect of Coating Thicknessl.oa; On Reaction

measurable for reaction progressestro < 0.5. As to be

Raté! expected from the preceding discussions, the effect of
Qeoas #M teg S NR/NR ma? distribution of rate constants is more pronounced for reactions

1 421 0.059 for which the overall rate is determined by the reaction

2 237 0.115 between S and R. It is less pronounced for reactions for

53 %ig (1)-271 which the rate is controlled by the uptake of S from solution

(compare Figure 11a and b).

2. Concentration-Dependent Diffusion Coefficients.
There are many reports in the literature about a significant
decrease of the overall reaction rate in polymer-supported

In terms of the model presented above, heterogeneitySynthesis when the reactions come close to complétion.
results in distributions of diffusion coefficients, of second- Recently, it has been shown for reactions in silica-based sol
order rate constants, or both. gel materials, for which diffusion coefficents af@s ~

1. Distributions of Reaction Rates.Here, we will limit ~ 1071°=107® cn? s7%233 that the diffusion coefficients
ourselves to the demonstration of the effect of distributions decrease significantly as the reaction procéédse reason
of the second-order rate constakton the overall reaction for this decrease is the reduction of free volume in the
rate. For this purpose, we define a distribution of immobilized polymer upon binding of the reactant S to the polymer-
reaction sites (which is the same for all shglisby assigning ~ supported reactant R. This effect is more pronounced for
a different value ok to each of these sites. (see eqs VI and silica-based materials with their small pore volumes than for
VII). For the examples simulated by egs IX and presented organic resins. However, also in the latter, decreasing overall
in Figure 11, the distribution dfis assumed to be Gaussian, reaction rates are sometimes observed during the reaction,
with a width of o = 0.625k, for all shellsj = 1 t0 jmax (S€€ especially in peptide synthesis, during which the growing
the inset in Figure 11A). This is a relatively broad distribution peptide chains gradually fill up a significant fraction of the
which is more typical of silica based sedjel materials than initially available free volume.
of organic resing®3” The most striking result is the In swollen polymers, the relation of Mackie and Meéfé%
incomplete consumption of the polymer-supported reaction is frequently used to describe the dependence of diffusion
centers, R. The chosen width of the distribution rende$%6 coefficients on the fraction of free volume; however, for our
of R nonreactive. The time traces deviate clearly from calculations, we will use eq X to describe the dependence
pseudo-first-order kinetics. However, the deviation is hardly of the diffusion coefficienDs (j, t) on product concentration

31teq is the reaction times required for production @f= cg’.
b nr/Nrmax iS the fraction of the amount of catalyst required for
homogeneous loading of the sphere.
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1,0

— T Table 3. Reaction Times (s) for 90% Conversion of R for
------------------------------ ] Regular Beadd,Beads with Gaussian Distribution of Second
Order Rate Constantsand Beads with
Concentration-Dependent Diffusion Consténts

too, S d=100um d=250um

regular bead 27 108
k-site-dependent 45 156
D-concentration-dependent 48 682

apDg = 107 cm? Sﬁl, ko =1M1 Sﬁl, Cgo= 0.25 M, cro = 0.05
M). P k(u) (0 = 0.625). ° Ds(Cp) (A = 2.5,B = 1).

cP/cRO ]

0,5 1

0,0 — T T observed during the aminomethylation of modified porous
"""""""""""""""" silica particles® The reaction rate decreases significantly
. . ] toward the end of the reaction due to the reduction of the
C/Cro 2 ] diffusion coefficient to only 10% of its initial value. The

e ] effects of rate constant distribution and concentration-
0.5- 3 i dependent diffusion coefficients are hard to distinguish
’ / experimentally and often are present simultaneously. They
i ] may be distinguished by varying the bead size. The effect
] of concentration dependence &fs will become more
pronounced with increasing bead size, whereas the effect of
B the reaction rate distribution remains unaffected. This is
. , . illustrated by the results presented in Table 3. Upon
0 500 t/s increasing the bead diameter frair= 100 to 250um, the
Figure 11. Effect of distribution of second-order rate constants reaction timetgo, for 90% completion increases by a factor
on the overall reaction rate. The time traces of product formation of 4.0 for regular beads but only by a factor of 3.5 for resin
(conversion of polymer-supported reactagiiCr, Vs time) are  ooqq with a Gaussian distribution of second-order rate

calculated using the following values for the second-order rate . . .
constants: (1k = 0.1 M1 s, (2) Gaussian distribution df as constants. However, for resin beads with concentration-

0,0

calculated from eq VIl usingo = 0.1 M1 sl ando = 0.62%, (3) dependent diffusion coefficienBs, tog increases by a factor
k=0.01 M1 sL. The other parameters ade= 100um, X = 0.5, of ~14.

Cro = 0.05 M, csp= 0.25 M,Ds = 106 cn? s % (A), andDs =

1078 cm? s71 (B). The inset shows the Gaussian distributiffk), Computational Section

of the second-order rate constant used in the simulations.
Simple Second-Order Reactionsk and Ds Time- and

H ',x"jiif;;:.:i:?-‘- Space-Independent)The concentration change of S due to
€/ Gy e diffusion is given by
_’fl/ S . DAt . .
os{ 4 % A Acg ginli ) = W[Aj{ e — Lt —cg(i, )} —
/ =} " 3N J . .
510" Aifes(s ) —cs(i + 1.0} (1a)
% e ] whereAr is the thickness of the shelly; is the volume of

0.0% 20 "0 shellj, andA; andA;+; are the outer and inner surface areas
v of shellj, respectively. The diffusion coefficiems is the
Figure 12. Effect of decrease of diffusion coefficiets during ' ' s

reaction progress on the overall reaction rate. The normalized time S3M€ Tqr gll shells. ) )
traces of product formation (conversion of polymer-supported  Partitioning of the mobile reactant S between bead resin

reactant,ce/Cro, Vs time) are calculated for the parametkrs: 1 and solution is considered by introducing the partition
M~1s71 cgo=0.25 M, Cro = 0.05 M,d = 100um, andX = 0.5. coefficientas = c&a4cSL, (Wherec,,and 2 are the

The concentration dependences of the diffusion coefficiba(p S > > .
used in the simulations are shown in the inset. The concentration equilibrium  concentrations of S in bead and solution,

dependences of the diffusion coefficients were calculated using eq'espectively) into the difference equations for diffusive
VIl and the following parameters: (1A = 0; (2) A= 35,B = concentration changes in solutigr< 0) and in the outermost
3.65; and (3A = 2.5,B = 1 (the numbering in the inset corresponds  bead shell j(= 1).

to the numbering in the main graph).

DAt
ACq 4i(0,1) = — ———[A{ a0, 1) — cy(1, t Ib
because it reproduces the data obtained on silica based a9 VoAf[ 1 0Cs(0,8) = Cs(1. O} (1b)

polymer matrixe¥ better than the Meares equation. DAt
The examples in Figure 12 illustrate the effect of reducing Acg y(1,t) = ﬁ[Al{ 0Ce(0, 1) — c(1, 1)} —
Ds on the progress of the reaction. The concentration 18T
dependence dbs used in these simulations is similar to that Afcg(1,1) — co(2,1)}] (Ic)
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The concentration change of S due to chemical reaction is The total concentrations are calculated from

given by eq Il . : . :
Cs(j, t + At) = c4(j, t) + ACg gige(j, 1) + ACq readdls 1)

ACs readis ) = —kes(i, )Cr(, DAL (D) (IXa)

The total concentrations of S and R are given by egs IIl. Gt AD =Gl + Ao (. )+ A ead]. (IXb)
Csli t+ At = cgj, t) + ACs giri, 1) + ACs i, 1) (Il1a) Crli, U, t+ At) = Cx(j, U, 1) + ACg reacli Ui 1) (IXc)
CR, t+ AD = Cr, ) + ACs readis D) (llib) 2. Concentration-Dependent Diffusion CoefficientsDue

to the concentration dependence of the diffusion coefficient,
the effective rate constant of the polymer-supported reaction
is rendered time-dependent. Equation X describes the
dependence of the diffusion coefficiebg(j, t) in shellj on

the local product concentratia(j).

Enzymatic Reactions.For the polymer-supported enzy-
matic reaction given by Scheme 2, the following set of
difference equations applies:

The diffusion of the mobile substrate S is described by
egs |. The corresponding expression for the diffusion of the
mobile product P is formally obtained by replacing all Dy A BroCH(i )
indexes S in egs | with P. Ds(. ) =Dy(1 ~ Ae ) )

The concentration changes due to chemical reaction of S,cg, is the initial concentration of immobilized reactaRy
the immobilized enzyme R, and the product P are given by Dgiis the diffusion coefficient foce(j) = 0, andA andB are

egs IV. two empirical constants.

ACq readl ) = [—KiCs(l, 1)Cr(, 1) + koiC2(, )IAL - (IVa) Conclusions

ACg reaclls ) = [—KiCs(i, )CR(, 1) + (K- + ky)c,(, D) AL The presented algorithm allows for the complete modeling
(IVb) of reactions in spherical volumes. On the basis of diffusion

coefficient and reaction rate, the reaction progress and the
spatial product distribution of a reaction can be predicted.
The concentrations of S, R, of the intermediate Z, and of Experimental data on polymer-supported reactions were
P in shellj at timet are given by egs V. successfully used to verify the model and allow for the
determination of experimentally inaccessible parameters by
Cs(is t+ At) = cg(j, ) + Acg gi(j, 1) + ACseadl 1) (V&) fitting to the model.
Ge(j, t+ A = Coli,t) + ACh gielis 1) + ACh reacli) The simulations described above show that two limiting

ACp eadis 1) = KoCy(j, DAL (IVe)

(Vb) cases exist for reactions in spherical compartments: diffusion
and activation control. Activation-controlled reactions show

Cz(J, t+ At) = ¢5(j, 1) — ACg reackis V) (Ve) no dependence of the reaction rates on bead size. The
] ) ) concentration dependence of their kinetics is very similar to
CR(, t+ At) = Cx(j, 1) + ACg reac{l 1) (vd) that in homogeneous solution. The product distribution is

homogeneous throughout the beads at all times.
Diffusion-controlled reactions show a strong dependence

of the reaction rateyr, on bead diameted. For catalytic

transformations of mobile substrate at immobilized catalysts,

vr O d1is found, whereas for the reaction of polymer-

supported reactants with mobile reactamnts,] d=? is valid.

In the latter case, sharp reaction fronts are formed during

Second-Order Reactions with Space-Dependent Reac-
tion Rate Constants and Concentration-Dependent Dif-
fusion Coefficients. 1. Space-Dependent Reaction Rate
Constants.Distributions of reaction rates are considered by
defining a Gaussian distribution of polymer-supported reac-
tive sitesR(j, u) in shellj,

¢l O)ef(k(u)fko)zlzo2 the reagtiqn, which allqws radial patte.rnin.g of the res.in peads.
Cr(j, U, 0)= (V1) The limit between diffusion and activation control is given
zef(k(u)fko)zl%z by the moduluskcrd?/50Ms. If the modulus significantly
4 exceeds unity, the reaction is activation-controlled; otherwise,
it is more or less diffusion-controlled.
each sitey, having its own second-order rate consti(oy. The rate laws of the two extreme cases can be described
Thek(u) are obtained as a series of equidistant rate constantsyy either reaction kinetics in homogeneous solutions or by
k(u) around the central value . the kinetics of diffusion into spheres. The algorithm described

_ _ _ above allows quantitative modeling also of intermediate cases
k(L) = K[l = (U = e 2)] (Vi under practically any boundary conditions, providing the

The concentration changes of the reactants are obtainecsPatial product distributions at arbitrary times.

from The algorithm requires as input parameters the diffusion
_ _ _ coefficient, Dg; the rate constank, within the resin bead;
ACg(j, u, t) = —k(u)eg(j, H)cg(, u, AL (Vilia) the bead diameted; the volume fraction occupied by the

. CoN Co . spheresX; the concentrations of the species involved in the
ACR(1, ) = ACs read]: ) = —ACp readls ) = ZACR(J’ u, t) reaction; and the partition coefficientys; of the mobile
(VIIb) reactant between resin and solution. If all of these parameters
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have been determined (e.g., by spectroscopic methtids),

the algorithm should be able to reproduce experimental

reaction kinetics quantitatively. Howevddg, k, andos are
often difficult to determine. If at least one of these three

parameters can be obtained by an independent method (most

probablyDs*? and as?), the others may be calculated or at

least estimated with the help of the model algorithm. Thus,

the algorithm, in addition to its practical value in the planning

of syntheses, may also help to get a deeper insight into the

physical chemistry of resin-supported reactions.
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