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A general algorithm allowing the numerical modeling of the time and space dependence of product formation
in spherical reaction volumes is described. The algorithm is described by the complete set of mass balance
equations. On the basis of these equations, the effects of the diffusion coefficient, reaction rate, bead size,
reagent excess, and packing density of the resin beads on the overall reaction rates are determined for
second-order reactions. Experimental data of reaction progress are employed to calculate reaction rates and
diffusion coefficients in polymer-supported reactions. In addition, the conditions for shell-like product
formation are determined, and various strategies for the radial patterning of resin beads are compared. The
effect of diffusion on polymer-supported enzyme-catalyzed reactions of the Michaelis-Menten type is treated,
as well. Finally, the effects of typical nonideal solid-phase phenomena, namely, the inhomogeneity of rate
constants and the concentration dependence of diffusion coefficients, on overall rates are discussed.

Introduction

Reactions in inhomogeneous media are ubiquitous in
chemical and in biological systems. All processes in com-
partmentalized reactors, such as cells and cellular organelles,
belong to this class. As one prominent example, during recent
decades, polymer-supported reactions have developed into
an area of growing significance. They have changed the
manner of synthetic practice, and they have triggered the
evolution of combinatorial chemistry.1-3

Despite intense research efforts, the profound understand-
ing of solid phase and other heterogeneous transformations
is still rather limited. The rational planning of polymer-
supported reactions is mostly based on empirical knowledge
collected over the years. Often, even experienced organic
chemists consider polymer beads as black boxes. A general
rationalization of the progress of polymer-supported reactions
has not yet been accomplished.

Over recent years, significant progress has been achieved
in the on- and off-bead analysis of polymer-supported
reactions;4-11 however, without a quantitative model at hand,
the analysis of experimental data with respect to optimization
of processes and materials is difficult. A computational model
allowing for the simulation of polymer-supported reactions
using experimentally accessible parameters would be of great

practical value, for example, in the rationalization of matrix
effects on polymer-supported reactions. Such a method could
also be used for the determination of parameters that are
not accessible experimentally by fitting the data to the model.

There have been a series of attempts to calculate reaction
rates in heterogeneous systems. Most of these calculations
deal with heterogeneous catalysis. It was recognized long
ago that realistic modeling of chemical reactions in inho-
mogeneous media, for example, of solid-phase synthesis,
heterogeneous catalysis, or cellular reactions, needs to
account for both reaction and simultaneous diffusion.12-22

Simpler models apply only in cases in which either of these
processes is much faster than the other one. When diffusion
is fast compared to reaction, the overall reaction kinetics are
“solution-like”, even when the actual reaction rates are
usually significantly reduced in comparison to those in
solution.7 Reactions which are dominated by uptake of
reactant into the microreactors have been described success-
fully by diffusive mass transfer into spheres.23

For simple reaction types and special boundary conditions,
the material balance equations for diffusion-reaction systems
have been solved analytically.12,14,15,23The most well-known
among these expressions is that derived by Thiele for first-
and second-order reactions in porous catalysts.10 Assuming
that steady-state conditions apply during the reaction, the
dimensionless Thiele modulus is obtained

whered is the diameter of the catalyst grains,aS is the activity
of the unit internal surface of the pores,p is the hydraulic
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radius of the pores, andD is the diffusion coefficient of the
reactant. If TM. 1, the reaction is diffusion-controlled; i.e.,
the reaction rate is proportional to the reciprocal of the grain
size. For TM, 1, the reaction is activation-controlled; i.e.,
the reaction rate is independent of the grain size.

Because analytical solutions are only accessible for simple
reaction types and special boundary conditions, their ap-
plication is severely limited. Therefore, a number of diffu-
sion-reaction systems have been treated by numerical solution
of the corresponding sets of mass balance equations using
finite difference17,18,20,24and finite element25,26 techniques.
However, these methods have not yet been applied to the
systematic modeling of matrix effects on polymer-supported
reactions on resin beads.

Here, we wish to introduce a general algorithm that allows
for the numeric modeling of the time- and space-dependence
of product formation in spherical reaction volumes under
almost any set of boundary conditions. We will first describe
the algorithm by introducing the complete set of mass balance
equations. On the basis of these equations, the effects of
diffusion coefficient, reaction rate, bead size, reagent excess,
and packing density of the resin beads on the overall reaction
rates are described for second-order reactions and applied
to the interpretation of experimental results for solid-phase
reactions. Subsequently, different strategies for radial pat-
terning of resin beads are compared. The effect of diffusion
on polymer-supported enzyme catalyzed reactions of the
Michaelis-Menten type is treated, as well. Finally, the
effects of typical nonideal solid-phase phenomena, namely,
distributions of rate constants and concentration dependence
of diffusion coefficients, on overall rates are discussed.

Results and Discussion

Description of the Algorithm. For the derivation of the
algorithm, it is assumed that polymer-supported reactions
are described appropriately by the diffusion of a reactant in
solution (S) to the reactive sites (R) immobilized inside the
resin beads, followed by a second-order reaction, yielding
an immobilized reaction product (P): R+ Sf P (see Figure
1). The rate of this reaction is calculated by solving the mass

balance eq 2 for the concentration of S,cS, at any time,t,
and any distance,r, from the bead center.

The first term on the right-hand side of eq 2 describes the
diffusion of S inside the bead, expressed by Fick’s second
law. The second term describes the consumption of S by
the reaction with the immobilized reactants, R. In hetero-
geneous systems, the diffusion coefficient,DS, and the
second-order rate constant,k, are generally time- and space-
dependent.

General analytical solutions of eq 2, that is, of the
combination of diffusion processes with subsequent chemical
transformations, are not available. Thus, we use numerical
methods to solve the corresponding set of difference equa-
tions. This offers the advantage of the algorithm’s being
easily adaptable to changing boundary conditions and even
different reaction types, for example, transformations involv-
ing polymer-supported catalysts.

The concept of the algorithm is visualized in Figure 1. A
resin sphere and the surrounding solution are contained in a
total reaction volume,Vtot, of which the resin sphere occupies
a fractionX. The resin sphere is divided intoN sufficiently
thin concentric spherical shells,j ) 1, ...,N. For every shell,
j, the change of concentration of S,∆cS(j, t), during the
sufficiently small time interval∆t is calculated. The con-
centration changes caused by diffusion and reaction,
∆cs,diff(j, t) and∆cs,react(j, t), respectively, contribute additively
to ∆cS(j, t). Loss or gain of S resulting from diffusion to or
from the two adjacent shells is obtained by applying Fick’s
first law, inserting the diffusion coefficientDS of S in the
resin (eq I). (Roman numerals refer to equations in the
Computational Section.) Partitioning of S between solution
and bead is accounted for by introducing the partition
coefficientRS (eqs Ib and c). The decrease of concentration
due to the reaction of S with R is calculated according to a
second-order rate law (eq II), inserting the rate constantk.
After the concentrations of S and R,cS(j) and cR(j), have
been calculated for all shells (eqs III), the procedure is
repeated using the result of time stept f t + ∆t as input
for the calculation of time stept + ∆t f t + 2∆t, until the
desired maximum reaction time has been reached. In this
simple model, a polymer-supported reaction is reduced to
three characteristic parameters: the second-order rate con-
stant,k, the diffusion coefficient,DS, and the diameter of
the resin sphere,d. Additional parameters are introduced to
describe variable reaction conditions: the volume fraction
occupied by the resin,X ) Vbead/Vtot, and the initial
concentrations of S and R,cS0 andcR0, respectively.

The following boundary conditions apply during the
simulations: The polymer-bound reactant R is homoge-
neously distributed in spherical resin particles which are
dispersed in a homogeneous solution of the reactant S. That
the polymer-bound rectants are, indeed, homogeneously
distributed has been shown experimentally in several cases,
for example, by Raman6 and fluorescence microscopy.5,27

The suspension is ideally stirred; i.e., the concentration of S

Figure 1. Concept of the algorithm. The resin beads of diameter
d and volumeVbead and the surrounding homogeneous solution
completely fill the reaction vessel of volumeVtot. A single bead is
divided into N shells of thickness∆r. The mobile reactant, S,
diffuses between the shells with diffusion coefficientDS and
undergoes a reaction with the polymer-supported reactant R with
the second-order rate constant,k, yielding polymer-supported
product P.

∂cS(r, t)

∂t
) DS(r, t)‚

∂
2cS(r, t)

∂r2
- k(r, t)cS(r, t)cR(r, t) (2)
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outside the resin is uniform at all times;28,40 the initial
concentration of S inside the beads is 0. The diffusion
coefficient and rate constant are independent of the position
in the resin bead. The diameter of the beads remains constant
throughout the reaction. In addition, coated particles may
be treated by slightly changing the boundary conditions: a
certain radius,rmax, is chosen so thatd/2 - rmax is the
thickness of the active layer, which is constituted by shells
j ) 1 to jmax. The concentration of polymer-bound reactant
in the inactive core is set tocR0 (r < rmax) ) 0. If it is desired
that the core of the particle be inaccessible to the mobile
reactant S, diffusion of S through the sphere with radiusrmax

is supressed by setting the surface area between shelljmax

and the core to 0, that is,Aj,max+1 ) 0.

To gain reliable information from the comparison between
experiments and simulations, the number of adjustable
parameters in the simulations should be kept as small as
possible. As many reaction parameters as possible must either
be set to a fixed value by controlling the reaction conditions
or they must be determined by independent physicochemical
methods. One of the most important requirements is to keep
the temperature of the reaction system constant. This is easy
to achieve for the mobile phase, whereas local temperature
gradients inside the beads cannot be completely avoided.
However, for the examples given below, temperature changes
are so small that even for large values of reaction enthalpies,
they do not change the reaction rates significantly. Thus, for
the sake of clarity, temperature changes are not considered
in this article. A further requirement pertains to the homo-
geneity of the beads and their physicochemical properties.
For example,DS andk should be independent of time and
space. This condition is not easy to maintain in practice
because the properties of the resin may be changed ap-
preciably by the reaction, especially for highly loaded
resins.29 How local and spatial variations ofk andDS can be
dealt with will be shown in part 3 of the next section, below.
The distribution of reactive sites R inside the beads should
be homogeneous, which may be monitored by some spec-
troscopic method, for example, fluorescence or Raman
microscopy.5,6 Ideal stirring conditions have to be provided,
either by vivid stirring or shaking or by rapid flow. The
starting point of the reaction should be well-defined in time.
In the case of reactions at elevated temperatures, this implies
that the target temperature has to be reached very quickly.
In addition, the beads should be preswollen by the solvent
in which the reaction occurs. Significant contributions of
anomalous diffusion should be avoided.

Application of the Algorithm. In the following, the
algorithm described in the previous section will be employed
to model characteristic situations relevant to the synthetic
chemist and biochemist. We concentrate mainly on reaction
conditions which are typical for polymer-supported organic
synthesis (as, e.g., the large excess of mobile reactant with
respect to resin-bound reactant, which is commonly em-
ployed to achieve nearly complete conversion of the latter).
The effects ofDS, k, d, X, and reagent excess on the overall
rate of the polymer supported reaction will be described.
Finally, examples from the literature will be discussed on
the basis of this model.

1. The Effect of Diffusion Coefficient and Second-Order
Rate Constant on the Overall Reaction Rate.The graphs
in Figure 2 show the relative product yield,cP(t)/cR0, for the
reaction S+ R f P in beads ofd ) 100 µm as a function
of reaction time for different combinations ofk andD. For
the bimolecular reaction rate constant,k, values of 1, 0.1,
and 0.01 M-1 s-1 are chosen. The diffusion coefficient is
varied fromD ) 10 -9 cm2 s-1 to D ) 10-6 cm2 s-1.

Although diffusion coefficients of typical reactants in
solution vary between values such asD0 ) 0.65× 10-6 cm2

s-1 for the protein BSA in water30 andD0 ) 13.5 × 10-6

cm2 s-1 for methyl red in benzene,31 they are significantly
reduced in polymer gels. In many cases of solvent-penetrated
polymer gels at high solvent concentrations, the diffusion
coefficient of the solute decreases exponentially with the
volume fraction,æ, of the polymer. For a given value ofæ,
the reduction ofD depends on the type of polymer, the solute
size, the solute concentration, and possible specific interac-
tions between solute and polymer (for further details see,
e.g., the review article by Masaro and Zhu32). In well-swollen
beads, the volume fraction of the polymer usually isæ ≈
0.2-0.4. For small and medium-sized organic reagents, this
leads to a reduction of the diffusion coefficient by a factor
of typically 3-632 (e.g., the diffusion coefficient of BOC-
Phe is reduced fromD0 ) 4.8× 10-6 cm2 s-1 in DMF bulk
solution to De ) 0.9 × 10-6 cm2 s-1 in DMF-swollen
polystyrene beads).33 More dramatic decreases are observed
for higher values ofæ, high degrees of cross-linking, larger

Figure 2. Simulated time traces of product formation normalized
to the initial concentration of reactant R (cP/cR0 corresponds to the
fraction of reacted polymer-supported reaction sites and, thus, gives
the conversion of R) during polymer-supported reactions with
different diffusion coefficients,D, and second-order rate constants,
k. The other parameters are kept constant:d ) 100 µm, X ) 0.5,
cR0 ) 0.05 M, cS0 ) 0.25 M.
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solute sizes, and strong solute-polymer interactions32,34(e.g.,
the diffusion coefficient of rhodamines is reduced fromD0

) 2.8 × 10-6 cm2 s-1 in water35 to De ≈ 10-7 cm2 s-1 in
solvent-swollen polymer beads36 and toDe ≈ 5 × 10-10 cm2

s-1 in silica sol-gel materials).23,37,38

For the bead size ofd ) 100 µm considered here, the
effective rate of the overall reaction shows a pronounced
dependence on bothk and DS. Although the reactions do
not follow simple rate laws (see below), the time traces can
be fitted to first-order rate laws (eq 3) in fair approximation,
because the mobile reactant S is present in 5-fold excess in
the overall reaction.

For the fastest rate constant ofk ) 1 M-1 s-1 the exponential
fit yields pseudo-first-order effective rate constants for the
overall reaction ofk′ ) 0.2, 0.12, 0.014, and 0.0013 s-1, for
diffusion coefficients ofDS ) 10-6, 10-7, 10-8, and 10-9

cm2 s-1, respectively. For the smallest second-order rate
constant of k ) 0.01 M-1 s-1, pseudo-first-order rate
constants ofk′ ) 0.002 s-1 are obtained forDS ) 10-6-
10-8 cm2 s-1. Only for the smallest diffusion coefficient of
DS ) 10-9 cm2 s-1 is a slightly reduced value ofk′ ) 0.0009
s-1 obtained. This means that for beads ofd e 100µm, the
effect of diffusion on the overall reaction rate is negligible,
provided second-order rate constant and diffusion coefficient
do not take on extreme values, that is, as long ask e 0.1
M-1 s-1 andDS g 10-8 cm2 s-1.

As already mentioned above, closer inspection of the time
traces reveals that the reactions of Figure 2 do not follow
simple rate laws. The exponential fits, for which the results

are given above as measures for the overall reaction rates,
are only more or less satisfactory approximations. Figure 3a
shows a semilogarithmic plot of two extreme combinations
of k andD. For case 1 (k ) 0.01 M-1 s-1 andDS ) 10-6

cm2 s-1), the exponential fit curve reproduces the simulation
very well. Case 2 (k ) 1 M-1 s-1 andD ) 10-9 cm2 s-1)
yields strong deviations from exponentiality. After a rapid
start, the reaction slows down appreciably.

This dependence of kinetics on the ratioDS/k can be
rationalized by considering the temporal developments of
the concentration profiles of S and R during the reaction
(Figure 3b). Case 1 may be regarded as a two-step reaction,
in which the beads are quickly penetrated by the reactant S
in a first step, which is followed by a homogeneous pseudo-
first-order reaction between S and R. In case 2, the reaction
starts with a rate which is determined by the second-order
rate constant,k, because the concentration of S in regions
of nonreacted R in the bead is high. This is due to relatively
fast diffusion at the beginning of the reaction, which in turn
is a consequence of the large concentration gradient of S in
the outer regions of the beads at that time. Because S is
consumed rapidly after having reached a nonreacted region
of the bead, a rather sharp reaction front is formed. The
concentration gradient of S becomes smaller as the reaction
front proceeds into the bead. Consequently, diffusion slows
down, which results in a decreasing overall reaction rate.

The simulation of concentration profiles may be helpful
in the task of radial patterning of resin beads. Radial
patterning (shell formation) is achieved by one of the
following strategies: (a) adding S in subequivalent amounts
and reacting the mixture until completion5 or (b) quenching
the resin-modifying reaction after the appropriate time span.

Figure 3. (a) Semilogarithmic plots of the reagent conversion (1- cP/cR0 corresponds to the fraction of nonreacted polymer-supported
reaction sites) vs time for two extreme values of the ratioDS/k. (b) Radial patterning of beads by solid-phase reactions: Concentration
profiles of product P (solid line) and mobile reactant S (broken line) along the radius of the bead (r ) 0 corresponds to the bead center)
at different times after the start of the reactions. (1)t ) 10 s, (2)t ) 400 s, (3)t ) 2400s. A: k ) 0.01 M-1 s-1, DS ) 10-6 cm2 s-1. B:
k ) 1.00 M-1 s-1, DS ) 10-9 cm2 s-1. Please note that curve 3 corresponds to 97% completion of the reaction. (c) Radial patterning of
polymer beads by reactions with substoichiometric reagent. Concentration profiles for two polymer-supported reactions with different initial
concentrations of S but otherwise equal parameters (k ) 1 M-1 s-1, DS ) 10-7 cm2 s-1, X ) 0.091,cR0 ) 0.01 M). (1) cS0 ) 0.2 M,
reaction quenched aftert ) 10 s; (2)cS0 ) 0.003 M, reacted until completion. Inset: time courses of the reactions (conversion vs time).

-
dcR

dt
) k′cR (3)
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Polymer spheres with two to five differently functionalized
concentric shells have been produced via a series of
protection/deprotection reactions.39 At first glance, strategy
(a) seems to be less favorable, because the reaction takes
much longer, and the resulting boundary between modified
and unmodified regions is more diffused (Figure 3c).
However, in practice, quenching of the modifying reaction
will always involve a diffusion process (either of a quenching
agent into the bead or of the reactant out of the bead).
Consequently, the resulting product profile will not be as
steep as that given by curve 1 in Figure 3c.

The profiles in Figure 3b show that both strategies require
the formation of sufficiently sharp reaction fronts. This, in
turn, requires the rate of diffusion of S,

into any shell at distancer from the center to be much smaller
than the rate of its consumption,

in this shell of volume dV:

We require the reaction front to be not wider than∆r )
d/10, which yields a maximum value of∆V ≈ 4πr2d/10 for
the active reaction volume at a distancer from the bead
center. Both rates constantly change as the reaction front
proceeds toward the center of the bead. As evident from
Figure 3b, the concentration gradient of S is approximately
linear if S is consumed more rapidly than it is provided by
diffusion. We arbitrarily consider the situation when half of
the immobilized reactant has reacted, that is, when the
reaction front has reachedr ) r′ ≈ 0.8d/2

This expression serves as a rule of thumb for the formation
of sharp reaction fronts. It is analogous to Thiele’s modulus,
however, with an important difference. Thiele’s modulus was
derived for catalysts, for which a steady state is maintained
throughout the reaction. In our case, the concentration
gradient of S decreases as the immobilized reactant is
consumed. Therefore, no steady state is reached during the
reaction. The diffusion gradient is steeper at the beginning
of the reaction and decreases with time, whereas the width
of the reaction front remains almost constant. Thus, the
modulus will be larger in the beginning than toward the end
of the reaction.

This modulus may also serve as a guideline to distinguish
between diffusion-controlled (kcRd2/500DS . 1) and activa-
tion-controlled (kcRd2/500DS , 1) reactions.

Diffusion coefficients may be controlled by using solvents
of different swelling abilities, but care must be taken that
there is no concomitant variation of the rate constant.

2. The Effect of Bead Size on the Overall Reaction
Rate. The elucidation of the impact of bead size on the
progress of solid phase reactions has been an issue of many
experimental and theoretical investigations. Different cases
have been observed. No dependence of reaction rate on bead
size has been found for a comparably slow alkylation of a
phenolate, monitored by spatially resolved resin bead analy-
sis.28 In addition, no bead-size dependence was observed for
the oxidation of benzyl chloride to benzaldehyde by using
chromate salts supported on a DVB cross-linked poly-
styrene.40 However, for many reactions involving polymer-
supported catalysts, it has been found that the overall reaction
rate is a function of inverse bead size.12,41-43 Recently, for
the aminomethylation of modified porous silica, a depen-
dence of the overall reaction rate ond-2 was reported.23

These different cases may be understood by simple kinetic
considerations, based on the arguments of the preceding
section. If diffusion is much faster than reaction, that is,DS/
kcRd2 f ∞, significant reaction starts only after the beads
have been homogeneously penetrated by mobile reactant S.
The reaction rate will thus be independent of bead size. If,
on the other hand, diffusion is much slower than reaction,
that is,DS/kcRd2 f 0, mobile reactant S is consumed as soon
as it enters regions with active immobilized reactant R. In
catalysts, this leads to the formation of a steady state, which
involves a linear concentration gradient of S throughout the
reaction. Thus, the mass of S entering the beads per unit
time is proportional to the total surface area of all beads in
the reaction system, which is proportional to 1/d if the
amount of R is kept constant. For polymer-supported
synthesis, where S is usually added in excess over R, the
diffusion front moves from the surface of the bead to its
center as the reaction proceeds. Therefore, the concentration
gradient and, thus, the rate of diffusion decrease during the
reaction. Under these conditions, the rate of diffusive mass
uptake into an ensemble of spheres scales withd-2 at constant
total volume of the sphere ensemble.44 The same is therefore
true for the overall reaction rate.

Although these simple considerations allow one to assess
the expected bead size dependence of the reaction rate, the
algorithm presented in part 1 is capable of providing the
product distribution at any time and at any location for any
combination of diffusion coefficient, reaction rate, and bead
size. Figure 4 gives an overview of the effect of particle
size on the reaction half time. Three different cases are
presented here. Reactions with high second-order rate
constants and relativey small diffusion coefficients show a
strongly superlinear dependence of the effective reaction rate
on bead diameter. The example shown in Figure 4a (k ) 1
M-1 s-1, D ) 5 × 10-8 cm2 s-1) is very close to ideal
diffusion control, resulting in a fairly linear plot of reaction
half time vs square of the bead diameter. Increasing the
diffusion coefficient toD ) 10-6 cm2 s-1 results in a>10-
fold faster reaction for the 500-µm beads, whereas the
effective rate for beads ofd ) 20 µm increases by only 50%
(Figure 4b). For reactions with small reaction rates and large

(dNdiff

dt )
r,t

) DSA(r)(dcS

dr )
r,t

(4a)

(dNreact

dt )
r,t

) kcR(r, t)cS(r, t) dV (4b)

kcR(r,t)cS(r,t) dV . DSA(r)(dcS

dr )
r,t

(4c)

kcR(r′,t)
cS(d/2,t)

5
A(r′) d

10
. DSA(r′)

cS(d/2,t)

0.1d
(5a)

kcRd2

500DS
. 1 (5b)
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diffusion coefficients (k ) 0.01 M-1 s-1, D ) 10-6 cm2 s-1),
the dependence of the effective reaction rate on bead diameter
is almost negligible (Figure 4c).

3. The Effect of Reagent Excess on the Overall Reaction
Rate. In solid-phase synthesis, the mobile reactant is usually
added in excess of the immobilized reaction sites to maximize
the conversion of the latter. The relative excess of S over R
affects not only the yield, but also the rate of the overall
reaction. Reactions that are characterized by a high ratio of
DS/kcRd2 (see Figure 5a, whereDS ) 10-6 cm2 s-1 andk )
0.1 M-1 s-1) show a concentration dependence that is very
similar to that of homogeneous solutions. If S is present in
equimolar amounts, the reaction rate obeys a second-order
rate law in good approximation. For the example shown in
Figure 5a, it takest ) 200 s for 50% completion andt )
2300 s for 92% completion of the reaction. Upon doubling
the amount of S, these time spans are reduced tot ) 82 and
380 s, respectively. Addition of S in 5-fold excess over R
yields a pseudo-first-order reaction with a reaction half time
of t1/2 ) 30 s, whereas 10-fold excess results int1/2 ) 15 s.
These half-lives are practically the same as for the corre-
sponding homogeneous reactions.

Reactions with smaller ratios ofDS/kcRd2 (see Figure 5b,
whereDS ) 10-9 cm2 s-1 andk ) 0.1 M-1 s-1), for which
the rates are dominated by diffusion and the kinetics, thus,
significantly deviate from first order, also show a pronounced
dependence on the concentration of the mobile reactant S.
For the example shown in Figure 5b, increasing the
concentration of S from an equimolar ratio to 2-, 5-, and
10-fold excess over R causes a reduction of the reaction half
time from t1/2 ) 1250 s to t1/2 ) 620, 335, and 240 s,
respectively. In the case of diffusion-dominated reactions,
the enhancement of the reaction rate with increasing con-
centration of S is due to the larger concentration gradient of
S, which in turn leads to an increased flux of mobile reactant
into the resin beads. As demonstrated by Figure 5b, this

dependence of reaction rates on mobile reactant concentration
is more pronounced for small concentrations of S.

4. The Effect of the Ratio of Solvent and Bead Volumes
on the Overall Reaction Rate.The fractionX of the reaction
volume that is occupied by the resin beads also affects the
reaction rates. Figure 6 shows the time traces of two reactions
with different degrees of diffusion control. The kinetics of
each of these reactions has been calculated for bothX )
0.5, which corresponds to relatively close packing of spheres,
as obtained in a flow reactor, and forX ) 0.04, which is
more characteristic of a stirred suspension. As illustrated by
the time traces in Figure 6a (for whichDS ) 10-8 cm2 s-1

andk ) 1 M-1 s-1), the rates of highly diffusion-controlled
reactions decrease significantly with decreasing packing
density. This effect is due to different concentrations of
mobile reactant S in the liquid phase at different packing
densities. At low packing densities, the concentration of S
in the liquid phase is smaller than at high packing densities,
because the total amount of S in the reaction system is the
same in both cases. Thus, smaller concentration gradients
of S are obtained for smaller values ofX, which in turn lead
to reduced mass transfer of S into the beads at small packing
densities. The lesser the extent to which reactions are limited
by diffusion, the weaker is the dependence of their overall
reaction rate onX, as demonstrated by the reaction shown
in Figure 6b (DS ) 10-7 cm2 s-1 and k ) 0.1 M-1 s-1),
which is much less sensitive to packing density than its
counterpart of Figure 6a. For reactions that are far from
diffusion control (e.g.,DS ) 10-6 cm2 s-1 andk ) 0.01 M-1

s-1), the differences between the time traces calculated for

Figure 4. Calculated reaction half-lives,t1/2, as a function of bead
diameter,d, for three polymer-supported reactions with different
combinations ofk andDS (note the different ordinate scales). The
remaining parameters are kept constant:X ) 0.2, cR0 ) 0.05 M,
cS0 ) 0.5 M. The polynomial fit curves are guides to the eye.

Figure 5. Semilogarithmic plots of the time traces of polymer-
supported reactions (cR0 ) 0.05 M,k ) 0.1 M-1 s-1, X ) 0.5) on
beads of diameterd ) 100 µm for two different diffusion
coefficients (A,D ) 10-6 cm2 s-1; B, D ) 10-9 cm2 s-1). Reaction
progress is given in fractions of nonreacted polymer-supported
reactants (1- cP/cR0). For each diffusion coefficient, the traces
were simulated for initial reactant concentrations ofcS0 ) 0.05 M
(curve 1),cS0 ) 0.10 M (curve 2),cS0 ) 0.25 M (curve 3), andcS0

) 0.50 M (curve 4).
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X ) 0.5 and 0.04 are negligible, because the concentrations
of S within the beads are practically the same for both values
of X.

5. Simulation of Experimental Kinetic Data of Resin-
Supported Reactions.In the following, the model will be
applied to the interpretation of experimental data obtained
by Li et al.45 on the effective rate of Knorr attachment onto

aminomethyl polystyrene resins (see Scheme 1). The reaction
was carried out on beads of three different sizes under the
conditions specified in Table 1. In all three reactions,
identical amounts of 0.5 mmol of amino groups (R) were
added to 50 mL of 0.2 M solutions of Knorr linker (S) in
dichloromethane (thus, due to different loadings of the
polystyrene resins with amino groups, the volume fractions
X vary with bead size). The authors obtained first-order rate
constantsk′exp from exponential fits to the experimental data
(Table 1). These rate constants decrease significantly with
increasing bead size.

We attempted to reproduce the bead-size dependence of
the reaction rates by using a single set ofk andDS values in
the simulations for all bead sizes. Figure 7 shows the set of
simulated time traces obtained fork ) 1.25 M-1 s-1 andDS

Figure 6. Normalized time traces of product formation (expressed
in terms of conversion of polymer-supported reagent,cP/cR0) during
polymer supported-reactions (bead diameterd ) 160 µm, cR0 )
0.01 M,cS0 ) 0.2 M) for two different combinations ofk andDS.
For each of these cases, the time traces are simulated for two
different values ofX.

Scheme 1.Knorr Linker Attachment Investigated on Six Different Resinsa

a See Table 2.36 The primary amine is a benzylic amine (top) in the polystyrene resins and the champion resin, and an aliphatic PEG-amine (bottom) in
the case of Tentagel and Argogel resins.

Table 1. Parameters Used for the Simulation of the Curves in Figure 7

resin type da, µm Xa cR0
a, M cS0

a, M k, M-1 s-1 D, cm2 s-1 k′exp
b, s-1 k′sim

b, s-1

PS 80 0.04 0.01 0.2 1.25 7× 10-8 0.077 0.069
PS 160 0.04 0.01 0.2 1.25 7× 10-8 0.021 0.017
PS 320 0.1 0.01 0.2 1.25 7× 10-8 0.004 0.005
Tentagel 200 0.1 0.01 0.2 1.5 3× 10-7 0.06 0.051
Argogel 240 0.063 0.01 0.2 2 6× 10-7 0.07 0.076
Champion 160 0.063 0.01 0.2 10 1× 10-6 0.4 0.3
a The values for the diameters of the swollen beads,d, the volume fractionsX, and the initial reactant concentrationscR0 andcS0 were

calculated from the data given in ref 45. The second-order rate constantsk and the diffusion coefficientsD were used for the simulations.
b The first-order rate constants,k′exp andk′sim, were obtained from exponential fits to the experimental data45 and to the simulated curves,
respectively.

Figure 7. Simulated time traces (solid curves) of product formation
(given in fractions of nonreacted polymer-supported reactant, 1-
cP/cR0) during Knorr attachment to aminomethyl polystyrene beads
of three different sizes. The parameters used in the simulations are
listed in Table 1. (1)d ) 80 µm, (2)d ) 160µm, (3)d ) 320µm.
The dashed curves are exponential fits to the simulations.
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) 7 × 10-8 cm2 s-1, which is among the closest approxima-
tions to the experimental data. To be able to compare
experimental and simulated rate constants, exponential curves
are fitted to the simulated time traces (Figure 7). The
simulated time traces are clearly nonexponential (see Figure
7), whereas Li et al.44 found acceptable agreement between
the experimental traces and the exponential fitting curves.
However, the deviations observed in Figure 7 between
simulated time traces and first-order kinetics fall within the
experimental error of the analytical method used by Li et
al. The first-order rate constants obtained from the expo-
nential fits are listed in Table 1. Whereas the agreement
between experimental and simulated rate constants is satis-
factory for the smallest bead size, there are significant
deviations for the two larger bead sizes. Obviously, the
reduction in reaction rate for the largest bead (d ) 320µm),
as compared to the smaller bead sizes, is too strong to be
ascribed solely to the increased bead diameter. Nevertheless,
the agreement between simulated and experimental bead-
size dependence of the rate constants is reasonable, especially
when the variations between the different resins (e.g., in
loading with amino groups) and the uncertainties in the input
parameters (e.g., the diameters of theswollenbeads) as well
as in the experimental results (e.g., inaccuracies related to
start and stop procedures) are taken into account.

The rates of the Knorr attachment reaction observed for
PEG-containing resins are much higher than those obtained
for the polystyrene resins (Table 1). The results of the
simulations are also given in Table 1. These values fork
and DS should not be taken too literally, because other
combinations ofk andDS yield very similar first-order rate
constantsk′ for the overall reaction. However, some general
trends in the data should be noted. The diffusion coefficient
DS in all of the PEG resins must be larger than that obtained
for the polystyrene resin (DS ) 7 × 10-8 cm2 s-1), because
otherwise, the simulated reaction rates are always smaller
than the experimental ones, independent of the value inserted
for the rate constant,k. Not only DS but also the second-
order rate constant,k, is affected by the resin type, as
becomes clear from the simulation of the reaction rate of
the Champion resin, which undergoes the fastest Knorr
attachment. To reproduce the experimental reaction rate by
simulation, the second-order rate constant must exceedk )
3.5 M-1 s-1, even ifDS ) 3 × 10-6 cm2 s-1 is inserted for
the diffusion coefficient of the Knorr linker.

6. Modeling of Enzyme-Catalyzed Reactions.Simula-
tions of polymer-supported reactions may also be extended
to catalytic reactions, as illustrated by the following example.
The kinetics of a typical enzymatic reaction in homogeneous
solution are usually described by the Michaelis-Menten
(MM) (Scheme 2) reaction, where enzyme R and reactant S
form an intermediate Z, which decays either to the reactants
S and R or to product P and enzyme R. In matrix-supported
reactions in which the enzymes are entrapped in a sol-gel
or polymer matrix, both MM46 and non-MM kinetics47 have
been observed.

6.1. Effect of k and D on the Kinetics of Catalytic
Reactions. In the polymer-supported model reaction con-
sidered here (Scheme 2), the enzyme is assumed to be
completely immobilized in the polymer bead, whereas both
substrate S and product P are mobile (for the sake of
simplicity, the same diffusion coefficient is chosen for S and
P). At the beginning of the reaction, no substrate S is present
in the resin beads. After the start of the reaction, S diffuses
into the resin bead and reacts with the enzyme R, according
to eqs I, IV, and V. The product, P, partitions between the
bead and the liquid phase. Figure 8 shows the time traces of
product formation for two extreme values of the diffusion
coefficients,DS andDP, but otherwise equal reaction condi-
tions. For the relatively large diffusion coefficient ofD )
10-6 cm2 s-1, the kinetics of the polymer-supported reaction
are very similar to those of the reaction in homogeneous
solution. For example, the reaction rate is of zeroth-order at
the beginning of the reaction. The Lineweaver-Burke plot
(Figure 8b) of this reaction is linear in good approximation,
except for a short induction period att < 5 s. This induction
period is needed to establish a more or less homogeneous
concentration of S throughout the bead (Figure 9). The
maximum reaction rate obtained from the Lineweaver-
Burke plot,VR,max, is practically the same as in homogeneous
solution (VR,max ) 10-4 M s-1), and the Michaelis-Menten
(MM) constant ofKM ) 1.09× 10-3 M exceeds that of the
corresponding homogeneous reaction (KM ) 1.01 × 10-3

M) only slightly. For the parameters used in this example,
the effect of diffusion on the overall reaction rate is rather
modest. Even upon reduction of the diffusion coefficient to

Scheme 2

Figure 8. (A) time traces of product formation (expressed in terms
of conversion of substrate,cP/cS0) during the catalytic reaction of
Scheme 2. The following parameters were used in the simulation:
k1 ) 106 M-1 s-1, k-1 ) 103 s-1, k2 ) 10 s-1, cS0 ) 0.01 M, cK0

) 10-5 M, d ) 100 µm, X ) 0.5. Curve 1,D ) 10-6 cm2 s-1;
curve 2,D ) 5 × 10-8 cm2 s-1; curve 3,D ) 10-9 cm2 s-1. (B)
Lineweaver-Burke plots of the traces shown in part A.
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D ) 5 × 10-8 cm2 s-1, VR,max remains almost unchanged,
and the MM constant is increased to onlyKM ) 2.9× 10-3

M.
For very small diffusion coefficients, for example,D )

10-9 cm2 s-1, the overall reaction rate is reduced significantly
as compared to the corresponding homogeneous case.
Concomitantly, the time traces of product formation do not
show zeroth-order rate behavior any more (Figure 8). The
Lineweaver-Burke plot (Figure 8b) exhibits a fairly linear
relationship fort > 220 s, from whichVR,max ) 3.5 × 10-5

M s-1 andKM ) 0.33 M is obtained. During the induction
period (t < 220 s), diffusion is faster than reaction; i.e., the
concentration profile of S progresses into the bead. Fort >
220 s, consumption of S is faster than diffusion; i.e., the
concentration of S decreases continuously all over the bead
(Figure 9). It is interesting to note that the catalytic centers
in the center of the bead, that is, atr < 40 µm practically do
not participate in the reaction.

6.2. Bead Size Dependence of Catalytic Reactions.To
investigate the bead-size dependence of catalytic reactions,
two MM-type polymer-supported reactions with different
diffusion coefficients but otherwise equal kinetic parameters
were simulated. The concentration of S in solution was kept
constant during the reaction. The resulting concentration
profiles are shown in Figure 10a and b. In the case of rapid
diffusion (Figure 10a), almost no bead-size dependence is
observed for realistic bead sizes, because the beads are
penetrated by the mobile reactant before significant amounts
of product have been produced. In the case of slow diffusion
(Figure 10b), practically linear concentration gradients of S

are formed, which approach a constant value aftert ≈ 220
s. Under these conditions, the reaction rate is determined by
the rate of diffusion of S into the beads, which in turn is
proportional to the concentration gradient. Accordingly, the
time traces of product formation obey zeroth-order kinetics.
As the reaction reaches a stationary state after a short
induction period, the bead diameter dependence for this
reaction is predicted by the Thiele model. Rewriting eq 1 to

and inserting the MM expression

for the reaction rateVR, we obtain

Insertion of the parameters used in Figure 10b yields TM≈
2 for a bead diameter ofd ) 5 µm.

Inspecting Figure 10d shows that according to the simula-
tions, the reaction rate is proportional to reciprocal bead size
for bead diametersd > 20 µm, whereas ford < 5 µm, the
bead size dependence of the reaction rate is negligible. Thus,
the simulation results are in nice agreement with the
prediction of the Thiele modulus.

6.3. Rates of Catalytic Reactions in Coated Particles.
From inspection of Figure 10d, it is obvious that in the case
of slow diffusion, only∼10% of the bead volume is reached
by the mobile reactant S. Thus, coating of the active resin
material onto an inactive core will allow reduction of the
amount of applied catalyst appreciably without really af-
fecting the reaction rate. Table 2 summarizes the results of
simulations using the same parameters as for the strongly
diffusion-controlled reaction of Figure 10b, but restricting
the catalytically active region to an active shell coated onto
an inactive and impermeable core. As evident from Table
2, reducing the active region of the 100-µm sphere to a shell
of 2 µm in thickness saves almost 90% of the catalyst while
decreasing the reaction rate by only 10%.

In general, the effect of coating may be assessed by solving
eq 6 for the bead radius,d/2, which then represents an
estimate for the optimum coating thickness.

Effects of Spatial and Temporal Variations of Bead
Properties on Overall Reaction Rates.Heterogeneity of
the reaction environment and restricted space are features
which are inherent to polymer-supported reactions. These
features are responsible for many undesired results, which
have been described in the literature. Examples are decreas-
ing overall reaction rates during the reaction23 and broad
product distributions in peptide synthesis.

Figure 9. Concentration profiles (concentrations vs distance,r,
from the center of the bead) for the catalytic reactions of Figure 8
(k1 ) 106 M-1 s-1, k-1 ) 103 s-1, k2 ) 10 s-1, cS0 ) 0.01 M,cR0

) 10-5 M, d ) 100µm, X ) 0.5). Solid lines,cP; broken lines,cS.
(A) D ) 10-6 cm2 s-1; (1) t ) 10 s, (2)t ) 70 s, (3)t ) 220 s. (B)
D ) 10-9 cm2 s-1; (1) t ) 10 s, (2)t ) 220 s, (3)t ) 1720 s.

TM ) d
2x VR

DScS
0

(6a)

VR )
k2k1cR
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0
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TM ) d
2x k1k2cR

0

DScS
0(k1 +

k2 + k-1
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0 )
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In terms of the model presented above, heterogeneity
results in distributions of diffusion coefficients, of second-
order rate constants, or both.

1. Distributions of Reaction Rates.Here, we will limit
ourselves to the demonstration of the effect of distributions
of the second-order rate constant,k, on the overall reaction
rate. For this purpose, we define a distribution of immobilized
reaction sites (which is the same for all shells,j), by assigning
a different value ofk to each of these sites. (see eqs VI and
VII). For the examples simulated by eqs IX and presented
in Figure 11, the distribution ofk is assumed to be Gaussian,
with a width ofσ ) 0.625k0 for all shellsj ) 1 to jmax (see
the inset in Figure 11A). This is a relatively broad distribution
which is more typical of silica based sol-gel materials than
of organic resins.23,37 The most striking result is the
incomplete consumption of the polymer-supported reaction
centers, R. The chosen width of the distribution renders∼6%
of R nonreactive. The time traces deviate clearly from
pseudo-first-order kinetics. However, the deviation is hardly

measurable for reaction progresses ofcP/cR0 < 0.5. As to be
expected from the preceding discussions, the effect of
distribution of rate constants is more pronounced for reactions
for which the overall rate is determined by the reaction
between S and R. It is less pronounced for reactions for
which the rate is controlled by the uptake of S from solution
(compare Figure 11a and b).

2. Concentration-Dependent Diffusion Coefficients.
There are many reports in the literature about a significant
decrease of the overall reaction rate in polymer-supported
synthesis when the reactions come close to completion.23

Recently, it has been shown for reactions in silica-based sol-
gel materials, for which diffusion coefficents areDS ≈
10-10-10-8 cm2 s-1,23,37 that the diffusion coefficients
decrease significantly as the reaction proceeds.23 The reason
for this decrease is the reduction of free volume in the
polymer upon binding of the reactant S to the polymer-
supported reactant R. This effect is more pronounced for
silica-based materials with their small pore volumes than for
organic resins. However, also in the latter, decreasing overall
reaction rates are sometimes observed during the reaction,
especially in peptide synthesis, during which the growing
peptide chains gradually fill up a significant fraction of the
initially available free volume.

In swollen polymers, the relation of Mackie and Meares17,48

is frequently used to describe the dependence of diffusion
coefficients on the fraction of free volume; however, for our
calculations, we will use eq X to describe the dependence
of the diffusion coefficientDS (j, t) on product concentration

Figure 10. Concentration profiles of substrate (cS, broken lines) and product (cP, solid lines) for two catalytic reactions with different
diffusion coefficients but otherwise identical parameters (k1 ) 106 M-1 s-1, k-1 ) 103 s-1, k2 ) 10 s-1, cS ) cS0 ) 0.02 M,cR0 ) 10-4 M,
X ) 0.5) (A) D ) 10-6 cm2 s-1; (1) t ) 10 s, (2)t ) 70 s, (3)t ) 220 s. (B)D ) 10-9 cm2 s-1; (1) t ) 10 s, (2)t ) 220 s, (3)t ) 1720
s. (C) Time traces of product formation (given as the fraction of reacted substrate,cP/cS0) for the catalytic reaction of part B. (D) Dependence
on bead diameter of reaction times needed for reachingcP/cS0 ) 1, for the catalytic reaction of part B.

Table 2. Effect of Coating Thickness,dcoat, on Reaction
Ratea

dcoat, µm teq, s nR/nR,max
b

1 421 0.059
2 237 0.115
5 216 0.271

50 216 1
a teq is the reaction times required for production ofcP ) cS

0.
b nR/nR,max is the fraction of the amount of catalyst required for
homogeneous loading of the sphere.
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because it reproduces the data obtained on silica based
polymer matrixes23 better than the Meares equation.

The examples in Figure 12 illustrate the effect of reducing
DS on the progress of the reaction. The concentration
dependence ofDS used in these simulations is similar to that

observed during the aminomethylation of modified porous
silica particles.23 The reaction rate decreases significantly
toward the end of the reaction due to the reduction of the
diffusion coefficient to only 10% of its initial value. The
effects of rate constant distribution and concentration-
dependent diffusion coefficients are hard to distinguish
experimentally and often are present simultaneously. They
may be distinguished by varying the bead size. The effect
of concentration dependence ofDS will become more
pronounced with increasing bead size, whereas the effect of
the reaction rate distribution remains unaffected. This is
illustrated by the results presented in Table 3. Upon
increasing the bead diameter fromd ) 100 to 250µm, the
reaction time,t90, for 90% completion increases by a factor
of 4.0 for regular beads but only by a factor of 3.5 for resin
beads with a Gaussian distribution of second-order rate
constants. However, for resin beads with concentration-
dependent diffusion coefficientsDS, t90 increases by a factor
of ∼14.

Computational Section

Simple Second-Order Reactions (k and DS Time- and
Space-Independent).The concentration change of S due to
diffusion is given by

where∆r is the thickness of the shells,Vj is the volume of
shell j, andAj andAj+1 are the outer and inner surface areas
of shell j, respectively. The diffusion coefficientDS is the
same for all shellsj.

Partitioning of the mobile reactant S between bead resin
and solution is considered by introducing the partition
coefficientRS ) cS,bead

eq /cS,sol
eq (wherecS,bead

eq andcS,sol
eq are the

equilibrium concentrations of S in bead and solution,
respectively) into the difference equations for diffusive
concentration changes in solution (j ) 0) and in the outermost
bead shell (j ) 1).

Figure 11. Effect of distribution of second-order rate constants
on the overall reaction rate. The time traces of product formation
(conversion of polymer-supported reactant,cP/cR0, vs time) are
calculated using the following values for the second-order rate
constants: (1)k ) 0.1 M-1 s-1, (2) Gaussian distribution ofk as
calculated from eq VII usingk0 ) 0.1 M-1 s-1 andσ ) 0.625k, (3)
k ) 0.01 M-1 s-1. The other parameters ared ) 100µm, X ) 0.5,
cR0 ) 0.05 M, cS0 ) 0.25 M, DS ) 10-6 cm2 s-1 (A), and DS )
10-8 cm2 s-1 (B). The inset shows the Gaussian distribution,f(k),
of the second-order rate constant used in the simulations.

Figure 12. Effect of decrease of diffusion coefficientDS during
reaction progress on the overall reaction rate. The normalized time
traces of product formation (conversion of polymer-supported
reactant,cP/cR0, vs time) are calculated for the parametersk ) 1
M-1 s-1, cS0 ) 0.25 M,cR0 ) 0.05 M,d ) 100µm, andX ) 0.5.
The concentration dependences of the diffusion coefficientsDS(j)
used in the simulations are shown in the inset. The concentration
dependences of the diffusion coefficients were calculated using eq
VII and the following parameters: (1)A ) 0; (2) A ) 35, B )
3.65; and (3)A ) 2.5,B ) 1 (the numbering in the inset corresponds
to the numbering in the main graph).

Table 3. Reaction Times (s) for 90% Conversion of R for
Regular Beads,a Beads with Gaussian Distribution of Second
Order Rate Constants,b and Beads with
Concentration-Dependent Diffusion Constantsc

t90, s d ) 100µm d ) 250µm

regular bead 27 108
k-site-dependent 45 156
D-concentration-dependent 48 682
a DS ) 10-7 cm2 s-1, k0 ) 1 M-1 s-1, cS0 ) 0.25 M,cR0 ) 0.05

M). b k(u) (σ ) 0.625k0). c DS(cP) (A ) 2.5, B ) 1).

∆cS,diff(j,t) )
DS∆t

Vj∆r
[Aj{cS(j - 1, t) - cS(j, t)} -

Aj+1{cS(j, t) - cS(j + 1,t)}] (Ia)

∆cS,diff(0, t) ) -
DS∆t

V0∆r
[A1{RScS(0, t) - cS(1, t)}] (Ib)

∆cS,diff(1, t) )
DS∆t

V1∆r
[A1{RScS(0, t) - cS(1, t)} -

A2{cS(1, t) - cS(2, t)}] (Ic)
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The concentration change of S due to chemical reaction is
given by eq II.

The total concentrations of S and R are given by eqs III.

Enzymatic Reactions.For the polymer-supported enzy-
matic reaction given by Scheme 2, the following set of
difference equations applies:

The diffusion of the mobile substrate S is described by
eqs I. The corresponding expression for the diffusion of the
mobile product P is formally obtained by replacing all
indexes S in eqs I with P.

The concentration changes due to chemical reaction of S,
the immobilized enzyme R, and the product P are given by
eqs IV.

The concentrations of S, R, of the intermediate Z, and of
P in shellj at time t are given by eqs V.

Second-Order Reactions with Space-Dependent Reac-
tion Rate Constants and Concentration-Dependent Dif-
fusion Coefficients. 1. Space-Dependent Reaction Rate
Constants.Distributions of reaction rates are considered by
defining a Gaussian distribution of polymer-supported reac-
tive sitesR(j, u) in shell j,

each site,u, having its own second-order rate constantk(u).
Thek(u) are obtained as a series of equidistant rate constants
k(u) around the central value ofk0.

The concentration changes of the reactants are obtained
from

The total concentrations are calculated from

2. Concentration-Dependent Diffusion Coefficients.Due
to the concentration dependence of the diffusion coefficient,
the effective rate constant of the polymer-supported reaction
is rendered time-dependent. Equation X describes the
dependence of the diffusion coefficientDS(j, t) in shell j on
the local product concentrationcP(j).

cR0 is the initial concentration of immobilized reactantR,
DS is the diffusion coefficient forcP(j) ) 0, andA andB are
two empirical constants.

Conclusions

The presented algorithm allows for the complete modeling
of reactions in spherical volumes. On the basis of diffusion
coefficient and reaction rate, the reaction progress and the
spatial product distribution of a reaction can be predicted.
Experimental data on polymer-supported reactions were
successfully used to verify the model and allow for the
determination of experimentally inaccessible parameters by
fitting to the model.

The simulations described above show that two limiting
cases exist for reactions in spherical compartments: diffusion
and activation control. Activation-controlled reactions show
no dependence of the reaction rates on bead size. The
concentration dependence of their kinetics is very similar to
that in homogeneous solution. The product distribution is
homogeneous throughout the beads at all times.

Diffusion-controlled reactions show a strong dependence
of the reaction rate,VR, on bead diameter,d. For catalytic
transformations of mobile substrate at immobilized catalysts,
VR ∝ d-1 is found, whereas for the reaction of polymer-
supported reactants with mobile reactants,VR ∝ d-2 is valid.
In the latter case, sharp reaction fronts are formed during
the reaction, which allows radial patterning of the resin beads.

The limit between diffusion and activation control is given
by the moduluskcRd2/500DS. If the modulus significantly
exceeds unity, the reaction is activation-controlled; otherwise,
it is more or less diffusion-controlled.

The rate laws of the two extreme cases can be described
by either reaction kinetics in homogeneous solutions or by
the kinetics of diffusion into spheres. The algorithm described
above allows quantitative modeling also of intermediate cases
under practically any boundary conditions, providing the
spatial product distributions at arbitrary times.

The algorithm requires as input parameters the diffusion
coefficient,DS; the rate constant,k, within the resin bead;
the bead diameter,d; the volume fraction occupied by the
spheres,X; the concentrations of the species involved in the
reaction; and the partition coefficient,RS; of the mobile
reactant between resin and solution. If all of these parameters

cS(j, t + ∆t) ) cS(j, t) + ∆cS,diff(j, t) + ∆cS,react(j, t)
(IXa)

cP(j, t + ∆t) ) cP(j, t) + ∆cP,diff(j, t) + ∆cP,react(j, t)
(IXb)

cR(j, u, t + ∆t) ) cR(j, u, t) + ∆cR,react(j, u, t) (IXc)

DS(j, t) ) DS(1 - Ae-BcR0/cP(j,t)) (X)

∆cS,react(j, t) ) -kcS(j, t)cR(j, t)∆t (II)

cS(j, t + ∆t) ) cS(j, t) + ∆cS,diff(j, t) + ∆cS,react(j, t) (IIIa)

cR(j, t + ∆t) ) cR(j, t) + ∆cS,react(j, t) (IIIb)

∆cS,react(j, t) ) [-k1cS(j, t)cR(j, t) + k-1cZ(j, t)]∆t (IVa)

∆cR,react(j, t) ) [-k1cS(j, t)cR(j, t) + (k-1 + k2)cZ(j, t)]∆t
(IVb)

∆cP,react(j, t) ) k2cZ(j, t)∆t (IVc)

cS(j, t + ∆t) ) cS(j, t) + ∆cS,diff(j, t) + ∆cS,react(j, t) (Va)

cP(j, t + ∆t) ) cP(j,t) + ∆cP,diff(j, t) + ∆cP,react(j,t)
(Vb)

cZ(j, t + ∆t) ) cZ(j, t) - ∆cR,react(j, t) (Vc)

cR(j, t + ∆t) ) cR(j, t) + ∆cR,react(j, t) (Vd)

cR(j, u, 0) )
cR(j, 0)e-(k(u)-k0)2/2σ2

∑
u

e-(k(u)-k0)2/2σ2

(VI)

k(u) ) k0[1 - σ(u - umax/2)] (VII)

∆cR(j, u, t) ) -k(u)cS(j, t)cR(j, u, t)∆t (VIIIa)

∆cR(j, t) ) ∆cS,react(j, t) ) -∆cP,react(j, t) ) ∑
u

∆cR(j, u, t)

(VIIIb)
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have been determined (e.g., by spectroscopic methods37,49-53),
the algorithm should be able to reproduce experimental
reaction kinetics quantitatively. However,DS, k, andRS are
often difficult to determine. If at least one of these three
parameters can be obtained by an independent method (most
probablyDS

32 andRS
4), the others may be calculated or at

least estimated with the help of the model algorithm. Thus,
the algorithm, in addition to its practical value in the planning
of syntheses, may also help to get a deeper insight into the
physical chemistry of resin-supported reactions.
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